
Database Transactions
• Many situations where a sequence of database

operations must be treated as a single unit
– A combination of reads and writes that must be

performed “as a unit”
– If any operation doesn’t succeed, all operations in the

unit of work should be rolled back
– Essential for correct implementation of tasks that

might fail
• Also essential for DBs with concurrent access

– An operation consisting of multiple reads may also
need to see a single, consistent set of values

– Reads should also be performed “as a unit”

Database Transactions (2)
• Databases provide transactions to demarcate

units of work
• Issue BEGIN at start of unit of work

– Can also say START TRANSACTION, etc.
• Issue one or more SQL DML statements within

the transaction
– DB may or may not support DDL inside transactions

• When finished, issue COMMIT command
– Signals that the transaction is completed

• If transaction must be aborted, issue ROLLBACK
– All changes made by the transaction are discarded

Transaction Properties
• A transaction system should satisfy specific properties

– Called the ACID properties
• Atomicity

– Either all the operations within the transaction are reflected
properly in the database, or none are

• Consistency
– When a transaction completes, the database must be in a

consistent state; i.e. all constraints must hold
• Isolation

– When multiple transactions execute concurrently, they must
appear to execute one after the other, in isolation of each other

• Durability
– After a transaction commits, all changes should persist, even

when a system failure occurs

Bank Account Example
• Transfer $400 from account A-201 to A-305

– Clearly requires multiple steps
• If transaction isn’t atomic:

– Perhaps only one account shows the change!
• If transaction isn’t consistent:

– Perhaps a balance goes below zero
• If transaction isn’t isolated:

– Multiple operations involving either account could
result in inaccurate balances

• If transaction isn’t durable:
– If DB crashes, could end up with inaccurate balances!

Transaction Properties And You

• As a database user:
– How atomicity, consistency, and durability are

implemented is irrelevant
– Important point is whether they’re provided

• … and how completely they are provided!

• Isolation is another matter entirely
– Turns out to affect implementation of

database applications quite extensively
– Database users are provided many choices

for how to handle transaction isolation

Transaction Isolation
• If database only has one client at a time,

isolation is irrelevant
– Client can only issue one transaction at a time
– Two transactions can never be concurrent

• Most database applications support many
concurrent users
– Concurrent transactions are very frequent

• Without isolation between transactions, can end
up with spurious results

• Five kinds of spurious results can occur in SQL,
without proper transaction isolation

Concurrent Transaction Issues
• Dirty writes:

– A transaction T1 writes a value to X
– Another transaction T2 also writes a value to X before T1

commits or aborts
– If T1 or T2 aborts, what should be the value of X?

• Dirty reads:
– A transaction T1 writes a value to X
– T2 reads X before T1 commits
– If T1 aborts, T2 has an invalid value for X

• Nonrepeatable reads:
– T1 reads X
– T2 writes to X, or deletes X, then commits
– If T1 reads X again, value is now different or gone

Concurrent Transaction Issues (2)

• Phantoms
– Transaction T1 reads rows that satisfy a predicate P
– Transaction T2 then writes rows, some of which satisfy P
– If T1 repeats its read, it gets a different set of results
– If T1 writes values based on original read, new rows are left out

• Lost updates
– Transaction T1 reads the value of X
– Transaction T2 writes a new value to X
– T1 writes to X based on previously read value

• How can a database avoid these kinds of issues?
– A simple answer: serialize all transactions
– No two transactions can overlap, ever.
– A very slow approach, but certainly works

Serialized Transactions
• Serializing all transactions is prohibitively slow
• Definite benefits for concurrent transactions:

– Different transactions may use completely separate
resources, and could run very efficiently in parallel

– Long, slow transactions shouldn’t hold up short, fast
transactions

• Databases can execute transactions in a way
that appears to be serialized
– Transactions are sequences of read and write

operations
– Schedule these operations in a way that maintains

serializability constraints

Transaction Isolation Constraints

• Serializable transaction constraint is one kind of
isolation constraint
– A very strict one, for critical operations

• Not all database applications require such strict
constraints
– Application may work fine with looser isolation

constraints
– Application might not achieve required throughput

with serializable transactions
• SQL defines four transaction isolation levels for

use in applications
– Can set transactions to have a specific isolation level

Transaction Isolation Levels
• Serializable

– Concurrent transactions produce same result as if
they were run in some serial order

– Serial order doesn’t necessarily correspond to exact
order that transactions were issued

• Repeatable reads
– During a transaction, other transactions’ committed

changes are not visible
– During a transaction, multiple reads of X produce

same results, regardless of committed writes to X in
other transactions

Transaction Isolation Levels (2)

• Read committed
– During a transaction, other transactions’ committed

changes become visible immediately
– Value of X can change during a transaction, if other

transactions write to X and then commit
• Read uncommitted

– Uncommitted changes to X in other transactions
become visible immediately

Transaction Isolation Levels (3)
• Back to the undesirable transaction phenomena:

– What does each isolation level allow?

• To specify the transaction isolation level:
SET TRANSACTION ISOLATION LEVEL

{ SERIALIZABLE | REPEATABLE READ |
READ COMMITTED | READ UNCOMMITTED }

– Different databases support different isolation levels!

Isolation Level Dirty Reads Nonrepeatable
Reads Phantoms

serializable NO NO NO
repeatable reads NO NO YES
read committed NO YES YES

read uncommitted YES YES YES

Databases and Isolation Levels

• Most DBs implement isolation levels with locks
• At simplest level, locks are:

– Shared, for read locks
– Exclusive, for write locks

• Locks may have different levels of granularity
– Row-level locks, page-level locks, table-level locks
– Finer-grain locks allow more transaction concurrency,

but demand greater system resources
– Databases often provide multiple levels of granularity

Database Locks
• Rules for locking are carefully defined

– What locks, or sequences of locks, satisfy the
isolation constraints?

– Can a lock be upgraded from shared to exclusive?
If so, when?

• In general:
– SELECT operations require shared locks
– INSERT, UPDATE, DELETE operations require

exclusive locks
– In practice, gets much more complicated, to prevent

“phantom rows” phenomenon, etc.
– Databases vary in locking implementations and

behaviors! (Read your manual…)

Locking Issues
• Some transactions are incompatible with others

– Each transaction requires some series of locks…
– Can easily lead to deadlock between transactions

• This can’t be avoided, because:
– DB can’t predict what SQL commands will be issued

in each transaction
– DB can’t predict where necessary rows will appear

• (e.g. in the same page that another transaction needs?)

• Solution:
– Database lock managers can detect deadlocks
– If transactions become deadlocked, one is aborted

Locking Issues (2)
• If a database application performs long or

complex operations in a transaction:
– It must be designed to handle situations where a

transaction is aborted due to deadlock!
– Solution is simple: just retry the operation

• Guidelines:
– Keep transactions as short and simple as possible
– If transactions are aborted frequently due to deadlock,

the application needs to be reworked
– Databases can usually report what commands

caused the deadlock
– Expect that deadlocks may still infrequently occur

Concurrent Reads and Writes
• Bank example:

– Two transactions using account table
– Repeatable-read or read-committed isolation level
– T1 reads balance of account A-444, gets $850
– T2 reads balance of account A-444, gets $850
– T1 adds $300 to balance of A-444
– T2 reads balance of A-444 again… ???

• If database stores each row in only one place
then T2 must block until T1 commits or aborts
– For repeatable reads, if T1 commits then T2 must

abort!

Readers and Writers

• For certain database implementations and
isolation levels, writers block readers

• Solution:
– Keep multiple versions of each row in the database
– If a writer updates a value:

• A new version of the entire row is added to the database
• Reader can continue with old version of value as long as

possible

– Writers don’t block readers anymore, in most cases
– Writers will only block other writers to the same row

Multiversion Concurrency Control

• Called multiversion concurrency control (MVCC)
– Each row has some “version” indicator

• A timestamp or a transaction ID
– Transactions can see a specific range of versions

• Depends on transaction isolation level, and operations that
transaction is performing

– If a transaction reads a row that another transaction
has written, reader can still proceed

• (for read-committed and many repeatable-read scenarios)
• Yields dramatic performance improvements for

concurrent transaction processing!
• Can make transaction isolation more confusing

– Transactions proceed that would block without MVCC

Read-Uncommitted Example
Operation: Deposit $100 into account A-333
T1: BEGIN;
T1: SELECT balance FROM account

WHERE account_number = 'A-333';
T2: BEGIN;
T2: SELECT balance FROM account

WHERE account_number = 'A-333';
T1: UPDATE account SET balance = balance + 100

WHERE account_number = 'A-333';
T2: SELECT balance FROM account

WHERE account_number = 'A-333';
T1: ROLLBACK;
T2: SELECT balance FROM account

WHERE account_number = 'A-333';

+---------+
| 850.00 |
+---------+

+---------+
| 850.00 |
+---------+

+---------+
| 950.00 |
+---------+

+---------+
| 850.00 |
+---------+

Read-Committed Example
Operation: Deposit $100 into account A-333
T1: BEGIN;
T1: SELECT balance FROM account

WHERE account_number = 'A-333';
T2: BEGIN;
T2: SELECT balance FROM account

WHERE account_number = 'A-333';
T1: UPDATE account SET balance = balance + 100

WHERE account_number = 'A-333';
T2: SELECT balance FROM account

WHERE account_number = 'A-333';
T1: COMMIT;
T2: SELECT balance FROM account

WHERE account_number = 'A-333';

+---------+
| 850.00 |
+---------+

+---------+
| 850.00 |
+---------+

+---------+
| 850.00 |
+---------+

+---------+
| 950.00 |
+---------+

Repeatable-Read Example
Operation: Deposit $100 into account A-333
T1: BEGIN;
T1: SELECT balance FROM account

WHERE account_number = 'A-333';
T2: BEGIN;
T2: SELECT balance FROM account

WHERE account_number = 'A-333';
T1: UPDATE account SET balance = balance + 100

WHERE account_number = 'A-333';
T2: SELECT balance FROM account

WHERE account_number = 'A-333';
T1: COMMIT;
T2: SELECT balance FROM account

WHERE account_number = 'A-333';

+---------+
| 850.00 |
+---------+

+---------+
| 850.00 |
+---------+

+---------+
| 850.00 |
+---------+

+---------+
| 850.00 |
+---------+

Serializable Example
Operation: Deposit $100 into account A-333
T1: BEGIN;
T1: SELECT balance FROM account

WHERE account_number = 'A-333';
T2: BEGIN;
T2: SELECT balance FROM account

WHERE account_number = 'A-333';
T1: UPDATE account SET balance = balance + 100

WHERE account_number = 'A-333';

• T1 blocks on the update, because T1 and T2
must be completely isolated from each other!

• T1 must wait for completion of T2, since T2 read
balance of A-333 before T1 tried to update it.

+---------+
| 850.00 |
+---------+

+---------+
| 850.00 |
+---------+

Read Issues
• Simple example:

– Bank account A-201 jointly owned by customers A
and B, with balance of $900

– Customer A requests a loan of $800 at the bank
• Loan amount must be less than current account balance

– At same time, Customer B withdraws $200 from the
same account

• Customer A’s transaction needs the latest value
– Value read from DB immediately goes out of date
– Serializable transaction would prevent this, but read-

committed and repeatable-read transactions allow it

Read Issues (2)
T1: Customer A wants a loan of $800

– Customer A owns account A-201, balance $900
– Loan amount must be less than account balance

T2: Customer B tries to withdraw $200 from A-201
– Customer B also owns account A-201

• T1 reads account balance of $900
• T2 subtracts $200 from account balance
• T1 creates a new loan of amount $800

– Bad assumption: Old value of $900 is still valid!
• Database is no longer in a consistent state

– Bank’s business rule is violated

Read-Only Values

• Transaction T1 needs latest value, and it must
not be allowed to change until T1 is finished!

• SELECT… LOCK IN SHARE MODE allows a
transaction to mark selected values as read-only
– Constraint is enforced until end of transaction

• Transaction T1:
SELECT balance FROM account WHERE
account_number = 'A-201' LOCK IN SHARE MODE;

– T2 cannot change balance of A-201 until T1 is finished

Read/Write Issues
• Two banking transactions:

– T1 wants to withdraw all money in account A-102
– T2 wants to withdraw $50 from A-102
– T1 needs to read current balance, before it can update
– T2 can simply update

• T1 reads balance of A-102
• T2 subtracts $50 from A-102
• T1 subtracts $400 from A-102

– Overdraft! T1 must roll back.
• Again, prohibited by serializable transactions

– Allowed by read-committed or repeatable-read levels

+---------+
| 400.00 |
+---------+
+---------+
| 350.00 |
+---------+
+---------+
| -50.00 |
+---------+

Intention to Update

• Transaction T1 must read before its update
– …but read lock is insufficient for purpose of T1

– T1 must state intention to update row, when it reads it
– Otherwise, T1 will be overruled frequently

• SELECT… FOR UPDATE command allows a
transaction to state intention to update

SELECT balance FROM account
WHERE account_number = 'A-102'
FOR UPDATE;

– T2 can’t update A-102 until T1 is finished

Serializable Transactions?
• Serializable transactions prevent a lot of issues

– Serializable transactions are consistent
• Other isolation levels can cause some problems

– Considered to be weak levels of consistency
• Why not serializable transactions for everything?

– Serializable transactions are very slow for large
database applications

– Simply not scalable
– Only certain operations run into trouble with other

isolation levels
– Can use features like FOR UPDATE as workarounds

Savepoints
• Transactions may involve a long sequence of steps

– If one step fails, don’t roll back entire transaction
– Instead, roll back to last “good” point and try something else

• Some databases provide savepoints
– Mark a savepoint in a transaction when it completes some tasks
– Can roll back to savepoint, and continue transaction from there

• To mark a savepoint:
SAVEPOINT name;

– Roll back to that savepoint:
ROLLBACK TO SAVEPOINT name;

– Can release a savepoint when it becomes unnecessary:
RELEASE SAVEPOINT name;

– Commit and rollback commands work on whole-transaction level

Review
• Transaction processing is a very rich topic

– Many powerful tools for applications to use
– Optimizations that allow for faster throughput

• Subtle issues can arise with transactions!
– Applications should expect that transactions might be

aborted by the database
– Sometimes operations require statements like
SELECT… FOR UPDATE to work correctly

• Always read your database manual! ☺
– What isolation levels are supported? Any variances?
– Are FOR UPDATE / LOCK IN SHARE MODE supported?
– Are savepoints supported?

