MySQL DML. SELECT Constructions 3.

Summary

¢ 1. HR sample database
e 2. SELECT Statement Full Syntax
e 3. SELECT - Filtering Data
o 3.1. DISTINCT - Remove Duplicates from the result set.
o 3.2. LIMIT / OFFSET of returned rows
o 3.3. WHERE Clause Constructions
= 3.3.1. Comparison operators (=, =, <>, <, >, <=, >=)
= 3.3.2. SQL Triple Logic Overview
= 3.3.2.1. IS NULL operator and the NULL concepts
= 3.3.2.2. AND operator
= 3.3.2.3. OR operator
= 3.3.2.4. NOT operator
= 3.3.3. BETWEEN operator
= 3.3.4. IN operator
= 3.3.5. LIKE operator
e 4. SELECT - Aliases
e 5. SELECT - Sorting Data
o 5.1. ORDER BY Clause
e 6. SELECT - Grouping Data
o 6.1. GROUP BY Clause
e 7.SELECT - Filtering Group
o 7.1. HAVING Clause
e 8. SELECT - Joining Multiple Tables
o 8.1. INNER JOIN
8.2. LEFT [OUTER] JOIN

8.4. FULL [OUTER] JOIN

(¢]
o 8.3.RIGHT [OUTER] JOIN @ ” ()
(¢]
o 8.5.[CROSS]JOIN 4

o 8.6. Self Joins
9. SELECT UNION and UNION ALL
e 10. SELECT Subqueries

© Yuriy Shamshin

Self Join

Inner Join

Right Join

Cross Join

Full Join

Left Join

Y N

1m7

1. HR sample database.

You can use SQL Tutorial site https://www.sqltutorial.org/seeit/ for online testing examples and exercises on real DB.

jobs
* job_id
job_title
min_salary
max_salary

regions

* region_id
region_name

I

countries

* country_id
country_name
region_id

locations

© Yuriy Shamshin

dependents
* dependent_id
first_name
last_name
R relationship
employees employee_id
* employee_id
first_name
I;i;—i?ame departments
phone_number * department_id
hire_date S0—0H department_name
job_id location_id
salary
manager_id
department_id B

* location_id
streef_address
postal_code
city
state_province
country_id

2017

2. SELECT Statement Full Syntax

To query data from a table, you use the SQL SELECT statement, where contains the syntax for selecting columns, selecting rows, grouping
data, joining tables, and performing simple calculations.

—-— Complete SELECT query
SELECT DISTINCT column, AGG FUNC(column or expression),
FROM mytable

JOIN another table
ON mytable.column = another table.column
WHERE constraint expression
GROUP BY column
HAVING constraint expression
ORDER BY column ASC/DESC
LIMIT count OFFSET COUNT;

Each query begins with finding the data that we need in a database, and then filtering that data down into something that can be processed
and understood as quickly as possible. Because each part of the query is executed sequentially, it's important to understand the order of
execution so that you know what results are accessible where.

The SELECT statement is one of the most complex commands in SQL include many clauses:

SELECT - This is one of the fundamental query command of SQL. It is similar to the projection operation of relational algebra. It selects
the attributes based on the condition described by WHERE clause.

FROM - This clause takes a relation name as an argument from which attributes are to be selected/projected. In case more than one
relation names are given, this clause corresponds to Cartesian product.

JOIN - for querying data from one, two or multiple related tables

WHERE - This clause defines predicate or conditions for filtering data based on a specified condition.

GROUP BY - for grouping data based on one or more columns

HAVING - for filtering groups

ORDER BY - for sorting the result set

LIMIT — for limiting rows returned

You will learn about these clauses in the subsequent tutorials on Practice Works PW-01, PW-02, PW-03 and PW-04.

© Yuriy Shamshin 3/17

8. SELECT - Joining Multiple Tables

So far, you have learned how to use the SELECT statement to query data from a single table. However, the SELECT statement is not limited
to query data from a single table. The SELECT statement can link multiple tables together.

A join is a method of linking data between one (self-join), two, or more tables based on values of the common column between the tables.
The process of linking tables is called joining. SQL provides many kinds of joins such as:

INNER JOIN - returns records that have matching values in both (multiple) tables.

LEFT [OUTER] JOIN - returns all records from the left table, and the matched records from the right table.
RIGHT [OUTER] JOIN - returns all records from the right table, and the matched records from the left table
FULL [OUTER] JOIN - returns all records when there is a match in either left or right table.

[CROSS] JOIN - produce a Cartesian product of rows of the joined tables using the cross join operation.
SELF JOIN — join a table to itself using either the inner join or left join clause.

SQL JOINS
LEFT INCLUSVE RIGHT INCLUSIVE
SELECT [Select List] SELECT [Select List]
FROM TableA A FROM TableA A
LEFT OUTER JOIN TableB B RIGHT OUTER JOIN TableB B
ON A.Key=B.Key ON A.Key= B.Key
LEFT EXCLUSIVE RIGHT EXCLUSIVE
SELECT [Select List] SELECT [Select List]
FROM TableA A FROM TableA A
LEFT INCLUSIVE LEFT OUTER JOIN TableB B LEFT OUTER JOIN TableB B RIGHT INCLUSIVE

ON A.Key=B.Key ON AKey=B.Key
WHERE B.Key IS NULL WHERE A.Key IS NULL
FULL OUTER INCLUSIVE FULL OUTER EXCLUSIVE
SELECT [Select List] SELECT [Select List]
FROM TableA A FROM TableA A
FULL OUTER JOIN TableB B FULL OUTER JOIN TableB B
ON AKey =B.Key ON AKey =B.Key
WHERE A.Key IS NULL OR B.Key IS NULL

INNER JOIN
SELECT [Select List]
FROM TableA A

'

INNER JOIN TableB B
ON A.Key = B.Key

LEFT EXCLUSIVE RIGHT EXCLUSIVE

FULL OUTER INCLUSIVE INNER JOIN FULL OUTER EXCLUSIVE

© Yuriy Shamshin 4/17

8.1. INNER JOIN

e The Inner Join clause links two (or more) tables by a relationship between two columns. Whenever you use the inner join clause, you
normally think about the intersection.

e Foreach row in 1th table, the Inner Join clause finds the matching rows in the 2th table and matched rows is included in final result set.
e We have two tables: A and B. Table A has four rows: (1, 2, 3, 4) and table B has four rows: (3, 4, 5, 6)

e When table A joins with the table B using the inner join, we have the result set (3, 4) that is the intersection of the table A and table B.

e The following Venn diagram illustrates the Inner Join of two tables.

(@)

A B AINNERJOIN B

B

o

AW N -

D

Syntax of the Inner Join.

e The INNER JOIN clause appears after the FROM clause. The condition to match between table A and table B is specified after the ON
keyword. This condition is called join condition.

¢ Notice that both tables have the same column name, therefore we had to qualify the column using the syntax table.column (B.n = A.n).

e If the column name of the A and B tables is fk and id the following statement illustrates the inner join clause:

SELECT *
FROM A
INNER JOIN B ON A.fk b = B.id;

The INNER JOIN clause can join three or more tables as long as they have relationships, typically foreign key relationships. For example:

SELECT A.columns, B.columns
FROM A

INNER JOIN B ON A.fk_b = B.id
INNER JOIN C ON A.fk_c =

|
(@]
'_l -
(o}

© Yuriy Shamshin 5/17

Example 1. SQL Inner Join 2 tables example.

We will use the employees and departments table to demonstrates how the INNER JOIN clause e’I“P'°3;ees
* employee_i
works. ﬂrstﬁne)i,me
. fast_name departments
Each employee belongs to one and only one department, while each department can have more emall - .
. . . phone_number department_id
than one employee. The relationship between the employees and departments table is one-to- e da B6—6H department_name
hire_date
many. job_id location_id
salary
The department_id column in the employees table is the foreign key column that links the ;“;’;?.?:,;—n'?_,d
employees to the departments table.

To get the information of the department id 1, 2 and 3 we used the IN operator in the WHERE clause to get rows with department_id 1, 2, 3.

SELECT department_id department_name
department id, p 11 Administration
department name

FROM - 2 Marketing
departments 3 Purchasing

WHERE

department id IN (1, 2, 3); ‘

To get the information of employees who work in the department id 1, 2, 3, you use the following query:

first_name last_name department_id

SELECT
first name p | Jennifer Whalen 1
_ 14
1 ast name , Michael Hartstein 2
department id Pat Fay 2
FROM Den Raphaely 3
employees exand Kh .
WHERE Alexander 00
department id IN (1, 2, 3) Shel Baida 3
ORDER BY Sigal Tobias 3
department id; Guy Himuro 3
Karen Colmenares 3

© Yuriy Shamshin 6/17

To combine data from these two tables, you use an Inner Join clause as the following query:

SELECT first_name last_name department_id department_id| department_name
firs t_n ame, Jennifer Whalen 1 1 Administration
last name, p | Michael Hartstein 2 2 Marketing
employees. department_id,. Pat Fay 2 2 Marketing
jgggit?igtSé:izartment—ld' Den Raphaely 3 3 Purchasing

FROM - Alexander Khoo 3 3 Purchasing
employees Shelli Baida 3 3 Purchasing

INNER JOIN Sigal Tobias 3 3 Purchasing
departments ON employees.department id = departments.department id Guy Himuro 3 3 Purchasing

WHERE Karen Colmenares |3 3 Purchasing
employees.department id IN (1 , 2, 3);

Example 2. SQL Inner Join 3 tables example.

employees

Each employee holds one job while a job may be held by many " employee._id

employees. The relationship between the jobs table and the employees jobs r‘;;‘—::::ee

table is one-to-many. ob.1d emall departments

i ob__titl e 5 | phone_number L * department_id

The following query uses the inner join clauses to join 3 tables: min_salary H ©Y hire_date PO | department_name

employees, departments, and jobs to get the first name, last name, job | max_salary job_id lacation_jd

title, and department name of employees who work in department id 1, Sma;gger y

2= 3. depanme_nt_id

SELECT

first name, first_name last_name job_title department_name
last n ame, Jennifer Whalen Administration Assistant Administration
job title, Michael Hartstein Marketing Manager Marketing
department name p |Pat Fay Marketing Representative Marketing

FROM Den Raphaely Purchasing Manager Purchasing

employees e

INNER JOIN departments d ON d.department id = e.department id Mexmdes Ko Pawchnsiog Clek Pecheing

INNER JOIN jobs j ON j.job id = e.job id Shell Baida Purchasing Clerk Purchasing

WHERE B B Sigal Tobias Purchasing Clerk Purchasing

e.depar tment_id IN (1, 2, 3); Guy Himuro Purchasing Clerk Purchasing
Karen Colmenares Purchasing Clerk Purchasing

© Yuriy Shamshin 7717

8.2. LEFT [OUTER] JOIN

e The previous Inner Join clause eliminates the rows that do not match with a row of the other table.
e The Left Outer Join, however, returns all rows from the left table whether or not there is a matching row in the right table.

¢ Note that the OUTER keyword is optional.

e Because non-matching rows in the right table are filled with the NULL values, you can apply the LEFT JOIN clause to miss-match rows
between tables (IS NULL construction).

e Suppose we have two tables A and B. The table A has four rows 1, 2, 3 and 4. The table B also has four rows 3, 4, 5, 6.

¢ When we join table A with table B, all the rows in table A (the left table) are included in the result set whether there is a matching row in
the table B or not.

e The following Venn diagram illustrates the Left Outer Join of two tables.

1 3
2 4
3 5
4 (5
A B

A LEFT JOIN B

Syntax of the Left Outer Join.

e The LEFT JOIN clause appears after the FROM clause. The condition that follows the ON keyword is called the join condition.

AW N

LEFT JOIN

NULL

¢ Notice that both tables have the same column name, therefore we had to qualify the column using the syntax table.column (B.n = A.n).

e In SQL, we use the following syntax to Left Outer Join table A with table B.

SELECT

A.*
FROM

A
LEFT JOIN

B ON B.id

= A.fk;

© Yuriy Shamshin

8/17

Example 1. SQL Left Outer Join 2 tables example.

Let’s take a look at the countries and locations tables.

Each location belongs to one and only one country while each country can have zero or more

countries

* country_id
country_name
region_id

locations

* location_id

street_address
postal_code

state_province

locations. The relationship between the countries and locations tables is one-to-many. country_id
The country_id column in the locations table is the foreign key that links to the country_id column in the countries table.
To query the country names of US, UK, and China, you use the following statement.
SELECT country_id country_name
country id, country name N China
FROM
. UK United Kingdom
countries
WHERE us United States of America
country id IN ('US', 'UK', 'CN'"); ‘
The following query retrieves the locations located in the US, UK and China:
country_id street_address city
SELECT S 20 bb ky Rd Southlak
country id, street address, city v 14 Jabberwocky R outhtake
FROM us 2011 Interiors Blvd South San Francisco
locations us 2004 Charade Rd Seattle
WHERE
Country_id IN ('ygs'! , 'UK' , 'CN') ; UK 8204 Arthur St London
Now, we use the LEFT JOIN clause to join the countries table with the locations table as the following query:
SELECT country_name country_id country_id | street_address city
c.country name, c.country id, p |United States of America |US us 2014 Jabberwocky Rd Southlake
1. CountrY_idr l.street address, 1. city United States of America |US us 2011 Interiors Blvd South San Francisco
FROM . United States of America |US us 2004 Charade Rd Seattle
countries c . . United Kingdom UK UK 8204 Arthur St London l
;EEE{EJOIN locations 1 ON 1. Country—ld - c. Country—ld United Kingdom UK UK Magdalen Centre, The Oxford Science Park Oxford
. hi [o] o]
c.country id IN ('US', 'UK', 'CN'") china =
917

© Yuriy Shamshin

e The condition in the WHERE clause is applied so that the statement only retrieves the data from the US, UK, and China rows.

e Because we use the LEFT JOIN clause, all rows that satisfy the condition in the WHERE clause of the countries table are included in

the result set.

e For each row in the countries table, the LEFT JOIN clause finds the matching rows in the locations table.

e If at least one matching row found, the database engine combines the data from columns of the matching rows in both tables.

e In case there is no matching row found e.g., with the country_id CN, the row in the countries table is included in the result set and the

row in the locations table is filled with NULL values.

Because non-matching rows in the right table are filled with the NULL values, you can apply the LEFT JOIN clause to miss-match rows between
tables. For example, to find the country that does not have any locations in the locations table, you use the following query:

SELECT
country name —-- or *
FROM
countries c
LEFT JOIN locations 1 ON l.country id =
WHERE
l.location id IS NULL
ORDER BY
country name;

c.country id

8.3. RIGHT [OUTER] JOIN

country_name
Argentina
Australia

Belgium

w N
I
H

Brazil
China —
Denmark

Eaypt

France

e The Right Outer Join is symmetrical analog of the Left Outer Join, however, returns all rows from the right table whether or not there is

a matching row in the left table.

e The following Venn diagram illustrates the Right Outer Join of two tables.

Syntax of the Right Outer Join.

SELECT A.*
FROM A
RIGHT JOIN
B ON B.id = A.fk;

© Yuriy Shamshin

(SR A ¥3]
O s W

LW N e
D
D

@

A B ARight Join B

10117

8.4. FULL [OUTER] JOIN

e In theory, a Full Outer Join is the combination of a left join and a right join. The full outer join includes all rows from the joined tables
whether or not the other table has the matching row.

e If the rows in the joined tables do not match, the result set of the Full Outer Join contains NULL values for every column of the table that
lacks a matching row.

e For the matching rows, a single row that has the columns populated from the joined table is included in the result set.
¢ Note that the OUTER keyword is optional.
e The following Venn diagram illustrates the Full Outer Join of two tables.

— o A
— -
1 3 /// 2
,—\« / \~
2 4 1 3 5 1 o 3
3 5 / 2 4 6 | 4
4 6 \ /,/ 5
— _4/"'/ 6
A B Full Join

Syntax of the Full Outer Join.

SELECT column list
FROM A
FULL JOIN B ON B.id = A.fk;

© Yuriy Shamshin 11117

8.5. [CROSS] JOIN

e CROSS JOIN - Cartesian product (all possible combos of each table).

e The following picture illustrates the Cartesian product of two tables:
¢ Note that the CROSS keyword is optional. b= .

¢ Note that unlike the Inner Join, Left Join, and Full Join, the CROSS JOIN clause does not have
a join condition.

CROSS JOIN

Syntax of the CROSS JOIN clause

SELECT column list
FROM A
JOIN B;

The following statement is equivalent to the one that uses the Cross Join clause above:

SELECT

column list
FROM

AI

B;

Example 1.

SELECT *
FROM tablel as a CROSS JOIN table2 as b;

Example 2.

If you add a WHERE clause, in case table t1 and t2 has a relationship, the CROSS JOIN works like the INNER JOIN clause as shown in the
following query:

SELECT * FROM tl1
CROSS JOIN t2
WHERE tl.id = t2.id;

© Yuriy Shamshin 12117

8.6. Self Joins

e We join a table to itself to evaluate the rows with other rows in the same table.
e To perform the Self Join, we use either an Inner Join, Left Join or Right Join clause.
e Because the same table appears twice in a single query, we have to use the table aliases.

e The following statement illustrates how to join a table to itself.

SELECT
columnl, column2, column3,
FROM
tablel A
INNER JOIN tablel B ON B.columnl = A.columnZ2;

¢ In this statement joins the table1 to itself using an INNER JOIN clause.

e A and B are the table aliases of the table1.

e The B.column1 = A.column2 is the join condition.

o Besides the INNER JOIN clause, you can use the LEFT JOIN or RIGHT JOIN clause.

Example 1.

See the following employees table. employees

* employee_id
The manager_id column specifies the manager of an employee. The following statement joins the employees table to first_name

itself to query the information of who reports to whom. 'aSI—_?ame
emai
employee manager phone_number
SELECT p |Bruce Ernst Alexander Hunold hire date
e.first name || ' ' || e.last name AS employee, David Austin Alexander Hunold job_id
m.first name || ' ' || m.last name AS manager Valli Pataballa Alexander Hunold salary
FROM Diana Lorentz Alexander Hunold ?ani?er—lij id
epartment_j
employees e Alexander Khoo Den Raphaely P -
INNER JOIN . . Shelli Baida Den Raphaely
employees m ON m.employee i1d = e.manager 1id —rmrs m———
- - I Il eN Raphae
ORDER BY manager; gal fomas phasy
Guy Himuro Den Raphaely
Karen Colmenares Den Raphaelv

© Yuriy Shamshin 13117

Example 2.
The president does not have any manager. In the employees table, the manager_id of the row that contains the president is NULL.

Because the Inner Join clause only includes the rows that have matching rows in the other table, therefore the president did not show up in the
result set of the query above.

To include the president in the result set, we use the LEFT JOIN clause instead of the INNER JOIN clause as the following query.

SELECT employee manager
e.first name || ' ' || e.last name AS employee, Steven King G
m.first name || ' ' || m.last name AS manager Bruce Ernst Alexander Hunold

FROM David Austin Alexander Hunold
employees e Valli Pataballa Alexander Hunold

LEFT JOIN

employees m ON m.employee id = e.manager id
ORDER BY manager;

© Yuriy Shamshin

Diana Lorentz

Alexander Khoo

Alexander Hunold

Den Raphaely

Shelli Baida Den Raphaely
Sigal Tobias Den Raphaely
Guv Himuro Den Raphaely

14/17

9. SELECT UNION and UNION ALL

e The UNION operator combines result sets of two or more SELECT statements into a single result set.
e To use the UNION operator, you write the individual SELECT statements and join them by the keyword UNION.
e The columns returned by the SELECT statements must have the same or convertible data type, size, and be the same order.
e The UNION is different from the JOIN that the join combines columns of multiple tables while the union combines rows of the tables.
¢ The database system performs the following steps:
o First, execute each SELECT statement individually.

o Second, combine result sets and remove duplicate rows to create the combined result set. To retain the duplicate rows in the
result set, you use the UNION ALL operator.

o Third, sort the combined result set by the column specified in the ORDER BY clause.
The following picture illustrates A UNION B and A UNION ALL B:

o) . -
m — e
A B A B

AUNION B AUNION ALL B

duplicate

Syntax of the UNION operator to combine result sets of two queries

SELECT

columnl, column2
FROM

tablel
UNION - or UNION ALL
SELECT

column3, columni4
FROM

table2;

© Yuriy Shamshin 15/17

Example 1. employees dependents
. od * employee_id * dependent_id
See the following employees and dependents tables: first_name first_name
last_name H og last_name
email relationship
The following statement uses the UNION operator to combine the first name and last name of pronenumber employee_id
employees and dependents. job_id
salary
manager_id
SELECT N department_id
first name, first_name last_name
last name Fred Austin
FROM o David Austin
employees Hermann Baer
UNION Kirsten Baer
SELECT Sandra Baida
first name, Shell Baida
las t_n ame Audrey Bell
FROM Sarah Bell
dependents
ORDER BY

last name;

© Yuriy Shamshin 16/17

10. SELECT Subqueries

o Subquery - show you how to nest a query inside another query to form a more flexible query for querying data.
o Correlated Subquery — introduce you to the correlated subquery which is a subquery that uses values from the outer query.

e EXISTS - show you how to check for the existence of the row returned from a subquery.

o ALL-illustrate how to query data by comparing values in a column of the table with a set of columns.

o ANY-—query data if a value in a column of a table matches one of value in a set.

© Yuriy Shamshin 1717

