
© Yuriy Shamshin 1/18

MySQL DML. SELECT Constructions 1.
Summary

• 1. HR sample database
• 2. SELECT Statement Full Syntax
• 3. SELECT - Filtering Data

o 3.1. DISTINCT - Remove Duplicates from the result set.
o 3.2. LIMIT / OFFSET of returned rows
o 3.3. WHERE Clause Constructions

§ 3.3.1. Comparison operators (=, !=, <>, <, >, <=, >=)
§ 3.3.2. SQL Triple Logic Overview

§ 3.3.2.1. IS NULL operator and the NULL concepts
§ 3.3.2.2. AND operator
§ 3.3.2.3. OR operator
§ 3.3.2.4. NOT operator

§ 3.3.3. BETWEEN operator
§ 3.3.4. IN operator
§ 3.3.5. LIKE operator

• 4. SELECT - Aliases
• 5. SELECT - Sorting Data

o 5.1. ORDER BY Clause
• 6. SELECT - Grouping Data

o 6.1. GROUP BY Clause
• 7. SELECT - Filtering Group

o 7.1. HAVING Clause
• 8. SELECT - Joining Multiple Tables

o 8.1. INNER JOIN
o 8.2. LEFT [OUTER] JOIN
o 8.3. RIGHT [OUTER] JOIN
o 8.4. FULL [OUTER] JOIN
o 8.5. [CROSS] JOIN
o 8.6. Self Joins

• 9. SELECT UNION and UNION ALL
• 10. SELECT Subqueries

© Yuriy Shamshin 2/18

1. HR sample database.
You can use SQL Tutorial site https://www.sqltutorial.org/seeit/ for online testing examples and exercises on real DB.

© Yuriy Shamshin 3/18

2. SELECT Statement Full Syntax
To query data from a table, you use the SQL SELECT statement, where contains the syntax for selecting columns, selecting rows, grouping
data, joining tables, and performing simple calculations.

-- Complete SELECT query
SELECT DISTINCT column, AGG_FUNC(column_or_expression), …
FROM mytable
 JOIN another_table
 ON mytable.column = another_table.column
 WHERE constraint_expression
 GROUP BY column
 HAVING constraint_expression
 ORDER BY column ASC/DESC
 LIMIT count OFFSET COUNT;

Each query begins with finding the data that we need in a database, and then filtering that data down into something that can be processed
and understood as quickly as possible. Because each part of the query is executed sequentially, it's important to understand the order of
execution so that you know what results are accessible where.

The SELECT statement is one of the most complex commands in SQL include many clauses:

• SELECT − This is one of the fundamental query command of SQL. It is similar to the projection operation of relational algebra. It selects
the attributes based on the condition described by WHERE clause.

• FROM − This clause takes a relation name as an argument from which attributes are to be selected/projected. In case more than one
relation names are given, this clause corresponds to Cartesian product.

• JOIN – for querying data from one, two or multiple related tables
• WHERE – This clause defines predicate or conditions for filtering data based on a specified condition.
• GROUP BY – for grouping data based on one or more columns
• HAVING – for filtering groups
• ORDER BY – for sorting the result set
• LIMIT – for limiting rows returned

You will learn about these clauses in the subsequent tutorials on Practice Works PW-01, PW-02, PW-03 and PW-04.

© Yuriy Shamshin 4/18

3. SELECT - Filtering Data

3.1. DISTINCT - Remove Duplicates from the result set.

The primary key ensures that the table has no duplicate rows. However, when you use the SELECT statement to query a portion of the columns
in a table, you may get duplicates.

To remove duplicates from a result set, you use the DISTINCT operator in the SELECT clause as follows:

SELECT DISTINCT
 column1, column2, ...
FROM
 table1;

If you use one column after the DISTINCT operator, the database system uses that column to evaluate duplicate. In case you use two or
more columns, the database system will use the combination of value in these columns for the duplication check.

To remove the duplicates, the database system first sorts the result set by every column specified in the SELECT clause. It then scans the
table from top to bottom to identify the duplicates that are next to each other. In case the result set is large, the sorting and scanning operations
may reduce the performance of the query.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, salary)

SELECT
 salary
FROM
 employees
ORDER BY salary DESC;

 SELECT
 DISTINCT salary
FROM
 employees
ORDER BY salary DESC;

© Yuriy Shamshin 5/18

3.2. LIMIT / OFFSET of returned rows

To retrieve a portion of rows returned by a query, you use the LIMIT and OFFSET clauses. The following illustrates the syntax of these clauses:

SELECT
 column_list
FROM
 table1
ORDER BY column_list
--or
LIMIT row_count;
--or
LIMIT row_count OFFSET offset;
--or
LIMIT offset, row_count;
-- row_count determines the number of rows that will be returned.
-- OFFSET clause skips the offset rows before return the rows.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(employee_id, first_name, last_name, salary)

SELECT
 employee_id, first_name, last_name
FROM
 employees
ORDER BY first_name
LIMIT 5 OFFSET 3;
--or
LIMIT 3, 5;

© Yuriy Shamshin 6/18

3.3. WHERE Clause to filter rows

See more on https://www.w3resource.com/sql/where-clause.php
• To select interesting rows from a table based on specified conditions, you use a

WHERE clause in the SELECT statement.
• Besides the SELECT statement, the WHERE clause use in UPDATE or

DELETE statement to specify which rows to be updated or deleted.
• The WHERE clause appears immediately after the FROM / SET clause.

SELECT
 column1, column2, ...
FROM table
WHERE
 condition;

• The WHERE clause contains one or more logical expressions (predicate) that evaluate each row in the table.
• SQL has three-valued logic which is TRUE, FALSE, and UNKNOWN (NULL).
• If a row that causes the condition evaluates to true, it will be included in the result set; otherwise (false and unknown), it will be excluded.
• You can use various comparison and logical operators to form logical expressions.

SQL Comparison Operators SQL Logical Operators
Operator Meaning Syntax Operator Meaning Syntax
= Equal expr1 = expr2 IS NULL Return true if the compared value is null expr IS NULL

<> (!=) Not equal to expr1 <> expr2 AND Return true if both expressions are true expr1 AND expr2

> Greater than expr1 > expr2 OR Return true if either expression is true expr1 OR expr2

>= Greater than or equal to expr1 >= expr2 NOT Reverse the result of any other Boolean operator NOT [Boolean_expression]

< Less than expr1 < expr2 BETWEEN Return true if the operand is within a range expression BETWEEN low AND high

<= Less than or equal to expr1 <= expr2 IN Return true if operand is equal to one value in a list expression IN (value1,value2,...)

 LIKE Return true if the operand matches a pattern expression LIKE pattern

 ANY Return true if any one of the comparisons is true Used for subquery

 ALL Return true if all comparisons are true Used for subquery

 EXISTS Return true if a subquery contains any rows Used for subquery

 SOME Return true if some of the expressions are true expr1 SOME expr2

© Yuriy Shamshin 7/18

3.3.1. Comparison Operators (=, !=, <>, <, >, <=, >=).

Examples for DB: employees(employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, manager_id, department_id)

To form a simple expression (my be include different SQL functions: length, sqrt, month…), you use one of the operators (>, <, =, …) above
with two operands that can be either column name on one side and a literal value on the other, for example:
salary > 1000

It asks a question: “Is salary greater than 1000?”.

Or you can use column names on both sides of an operator such as:
length(first_name) < length(last_name)

This expression asks another question: “Is the first_name length less than the last_name length?”.

The literal values that you use in an expression can be numbers, characters, dates, and times, depending on the format you use:
• Number: use a number that can be an integer or a decimal without any formatting e.g., 100, 200.5
• Character: use characters surrounded by either single or double quotes e.g., “100”, “John Doe”.
• Date: use the format that the database stores. It depends on the DBMS e.g., MySQL uses 'yyyy-mm-dd' format to store the date data.
• Time: use the format that the database system uses to store the time. For example, MySQL uses 'HH:MM:SS' to store time data.

Finds employees who have the salaries greater than 14,000 (number literal) and sorts the result set based on the salary in descending order.
SELECT employee_id, first_name, last_name, salary
FROM employees
WHERE salary > 14000
ORDER BY salary DESC;

The following query finds all employees who work in the department id 5 (number literal).
SELECT employee_id, first_name, last_name, department_id
FROM employees
WHERE department_id = 5
ORDER BY first_name;

© Yuriy Shamshin 8/18

SQL is case-insensitive. However, when it comes to the values in the comparisons, it is case-sensitive. For instance, the following query finds
the employees whose last name is Chen (char literal).
SELECT employee_id, first_name, last_name
FROM employees
WHERE last_name = 'Chen';

To get all employees who joined the company after January 1st, 1999 (date literal), you use the following query:
SELECT employee_id, first_name, last_name, hire_date
FROM employees
WHERE
 hire_date >= '1999-01-01'
ORDER BY
 hire_date DESC;

Find the employees who joined the company in 1999 (number/char literal)
SELECT
 employee_id, first_name, last_name, hire_date
FROM employees
WHERE
 YEAR(hire_date) = 1999
-- strftime('%Y’, hire_date) = '1999'
ORDER BY
 hire_date DESC;

You can combine simple expressions that use various comparison operators using the logical operator (AND, OR, NOT, …).

For example, the following statement finds employees in department 8 and have the salary greater than 10,000:
SELECT
 employee_id, first_name, last_name, salary
FROM employees
WHERE
 salary > 10000 AND department_id = 8
ORDER BY
 salary DESC;

© Yuriy Shamshin 9/18

3.3.2. SQL Triple Logic Overview.

3.3.2.1. IS [NOT] NULL operator and the NULL concepts.

NULL value is special in SQL, because any comparisons with a NULL can never result in true or false, but in a third logical result - unknown.
NULL indicates that the data is: unknown, inapplicable or even does not exist. In other words, NULL represents that data is missing in the DB.

For example. If an employee does not have any phone number, you can store it as an empty string (‘’). However, if we don’t know his or her
phone number at the time we insert the employee record, we will use the NULL value for the unknown phone numbers.

General properties of NULL:
NULL != NULL

Therefore you cannot use the comparison operator (=, !=, <>, <, <=, >, >=) to compare a value to a NULL value. For example, the following
statement return not correct empty result.

Bad Expression with NULL.
-- Find all employees who do not have the phone numbers
SELECT employee_id, first_name, last_name, phone_number
FROM employees
WHERE phone_number = NULL;

Good Expression with IS NULL.
-- Find all employees who do not have the phone numbers
SELECT employee_id, first_name, last_name, phone_number
FROM employees
WHERE phone_number IS NULL;

Good Expression with IS NOT NULL.
-- Find all employees who have phone numbers
SELECT employee_id, first_name, last_name, phone_number
FROM employees
WHERE phone_number IS NOT NULL;

© Yuriy Shamshin 10/18

3.3.2.2. AND operator.
Logical_expression1 AND Logical_expression2

The following table illustrates the results of the AND operator when comparing true, false, and NULL values; and properties of AND:

x AND y y AND interesting properties

true false null commutativity x AND y := y AND x

x

true true false null idempotency x AND x := x

false false false false neutrality, here true is a neutral element true AND y := y

null null false null absorption, here false an absorbing element false AND y := false

• Notice that the AND operator returns true only if both expression is true.

SQL AND operator and short-circuit evaluation.

The short-circuit feature use absorption properties and allows the database system to stop evaluating the remaining parts of a logical
expression as soon as it can determine the result.

Example to get a better understanding of how the to short-circuit evaluation feature works. See the following condition:
1=0 AND 1=1;

The database system processes the two comparisons first (1=0, 1=1) and uses the AND operator to evaluate the two results.

However, with the short-circuit evaluation feature, the database system just has to evaluate the left part of the expression, because the left
part (1=0) returns false, that causes the whole condition returns false regardless of the result of the right part (1=1) of the condition.

The short-circuit feature, therefore, decreases the CPU computation time and in some cases helps prevent runtime-error. Consider the
following condition:

1=0 AND 1/0;

If the DBMS supports the short-circuit feature, it will not evaluate the right part of the expression (1/0) that causes the division by zero error.

© Yuriy Shamshin 11/18

3.3.2.3. OR operator.
Logical_expression1 OR Logical_expression2

The following table illustrates the results of the OR operator when comparing true, false, and NULL values; and properties of OR:

x OR y y OR interesting properties

true false null commutativity x OR y := y OR x

x

true true true true idempotency x OR x := x

false true false null neutrality, here false is a neutral element false OR y := y

null true null null absorption, here true an absorbing element true OR y := true

• Notice that the OR operator always returns true if either expression is true.
YEAR(hire_date) = 1997 OR YEAR(hire_date) = 1998

• If the database system use absorption properties and supports the short-circuit feature, the OR operator stops evaluating the
remaining parts of the condition as soon as one expression is true.

• When you use the OR operator with the AND operator, the database system evaluates the OR operator after the AND operator.
• This is known as the rule of precedence. However, you can use parentheses to change the order of evaluation.

(expr1 OR expr2 AND expr3)
-- is equivalent of
expr1 OR (expr2 AND expr3))

department_id = 3 AND (YEAR(hire_date) = 1997 OR YEAR(hire_date) = 1998)
-- is not equivalent of
department_id = 3 AND YEAR(hire_date) = 1997 OR YEAR(hire_date) = 1998

YEAR(hire_date) = 2000 OR YEAR(hire_date) = 1999 OR YEAR(hire_date) = 1990;
-- is equivalent of
YEAR(hire_date) IN(1990, 1999, 2000)

© Yuriy Shamshin 12/18

3.3.2.4. NOT operator.

To reverse the result of any Boolean expression, you use the NOT operator.

NOT use with various logical operators such as AND, OR, LIKE, BETWEEN, IN, EXISTS and with NULL value.

NOT [Logical_expression]
NOT NULL

The following table illustrates the results of the NOT operator when comparing true, false, and NULL values; and properties of NOT:

x NOT OR interesting properties

true false The law of double negation NOT NOT x := x

false true

null null absorption, here null an absorbing element NOT null := null

• When you use the NOT operator with OR, AND operator, the database system evaluates NOT operator before the OR, AND operator.

Examples

department_id = 5 AND NOT salary > 5000

department_id NOT IN (1, 2, 3)

first_name NOT LIKE 'D%'

salary NOT BETWEEN 3000 AND 5000

-- Find all employees who have phone numbers
SELECT employee_id, first_name, last_name, phone_number
FROM employees
WHERE phone_number IS NOT NULL;	

© Yuriy Shamshin 13/18

3.3.2.5. Examples for Logical Operators.

A logical operator allows you to test for the truth of a condition. Similar to a comparison operator, a logical operator returns a value of true,
false, or unknown (null).
Examples for DB: employees(employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, manager_id, department_id)

IS NULL - returns true if the compared value is null
The following statement finds all employees who do not have a phone number
SELECT first_name, last_name, phone_number
FROM employees
WHERE
 phone_number IS NULL
ORDER BY
 first_name, last_name;

AND – combine multiple Boolean expressions
The following statement finds all employees whose salaries are greater than 5,000 and less than 7,000
SELECT first_name, last_name, salary
FROM
 employees
WHERE
 salary > 5000 AND salary < 7000
ORDER BY
 salary;

OR – combine multiple Boolean expressions
The following statement finds employees whose salary is either 7,000 or 8,000
SELECT first_name, last_name, salary
FROM employees
WHERE salary = 7000 OR salary = 8000
ORDER BY salary;

© Yuriy Shamshin 14/18

3.3.3. BETWEEN operator.

The BETWEEN operator select data within a range of values, given the minimum value and maximum value.
test_expr BETWEEN low_expr AND high_expr

In this syntax:

• test_exp is the expression to test for in the range defined by low and high.
• low_expr and high_expr can be either expressions or literal values with a requirement that the value of low is less than value of high.
• if the low value is greater than the high value, you will get an empty result set.
• between is equivalent to the following condition:

test_expr >= low_expr AND test_expr <= high_expr

• To negate the result of the BETWEEN operator, you add the NOT operator:
test_expr NOT BETWEEN low AND high

• The NOT BETWEEN is equivalent to the following condition:
test_expr < low OR test_expr > high

For example, the following statement finds all employees whose salaries are between 9,000 and 12,000.
SELECT
 first_name, last_name, salary
FROM
 employees
WHERE
 salary BETWEEN 9000 AND 12000
ORDER BY salary;

Notice that the value 9,000 and 12,000 are included in the output.

© Yuriy Shamshin 15/18

Using the BETWEEN operator with the DATETIME data.

Simple Examples.

To find all employees who joined the company between January 1, 2019, and December 31, 2000
hire_date BETWEEN '2019-01-01' AND '2020-12-31'

To retrieve all employees who have not joined the company from January 1, 2009 to December 31, 2019
hire_date NOT BETWEEN '2009-01-01' AND '2019-12-31'

Where is my rows?
Consider the following t1 table:

There are four rows created between June
29, 2016 and June 30, 2016.

If you use the BETWEEN operator to query
the rows whose created_at values are
between June 29, 2016, and June 30, 2016,
you will get what you may expect.
SELECT id, created_at FROM t1
WHERE created_at BETWEEN
'20160629' AND '20160630';

The result shows only three rows returned.

This is because when you used the following
condition:
WHERE created_at BETWEEN
'20160629' AND '20160630'

The database system translates it into
something like:
WHERE created_at BETWEEN
'20160629 00:00:00.000000' AND
'20160630 00:00:00.000000'

Therefore the row with value 2016-06-30
23:59:59 was not included in the result set.

Using the Between operator with a STRING data.
SELECT *
FROM product
WHERE ProductCode BETWEEN 'A' AND 'C'
ORDER BY ProductCode;

© Yuriy Shamshin 16/18

3.3.4. IN operator.

• The IN operator check whether a value is in the list of specified values.
• The IN operator is often used in the WHERE clause of the SELECT, UPDATE, and DELETE statements. It is also used in subqueries.
• The IN operator returns true if the compared value matches at least one value in the list; otherwise, it returns false.

expression IN (value1,value2,...)

• Notice that if any value in the list (value1,value2,...) is null, the IN operator returns no rows.
• The condition that uses the IN operator can be rewritten using one or more OR operators as follows:

expression = value1 OR expression = value2 OR ...

• To negate the result of the IN operator, you use the NOT operator:
expression NOT IN (value1, value2,...)

• The NOT IN operator returns true if the expression does not match any value in the list, otherwise, it returns false.
• Similarly, you can rewrite the NOT IN operator by using the AND operators as shown below:

expression != value1 AND expression != value2 AND...

Example. The following statement finds all employees who work in the department id 8 or 9.
SELECT
 first_name, last_name, department_id
FROM
 employees
WHERE
 department_id IN (8, 9)
ORDER BY
 department_id;

© Yuriy Shamshin 17/18

3.3.5. LIKE operator.

LIKE - query data based on a specified pattern. See the following syntax:
expression LIKE pattern

• The LIKE operator compares a value to similar values using a pattern.
• The LIKE operator is often used in the WHERE clause of the SELECT, UPDATE, and DELETE statements.
• SQL provides two wildcards used in conjunction with the LIKE operator:

o The percent sign (%) represents zero, one, or multiple characters.
o The underscore sign (_) represents a single character.

• If you want to match the wildcards % or _, you must use the backslash character (\) to escape it.
• In case you want to use a different escape character rather than the (\), you use ESCAPE clause in the LIKE expression as follows:

expression LIKE pattern ESCAPE escape_character

• To negate the result of the LIKE operator, you use the NOT operator as follows:
expression NOT LIKE pattern ESCAPE escape_character

Examples.

To find all employees whose first name starts with the string jo:
SELECT employee_id, first_name, last_name
FROM employees
WHERE
 first_name LIKE 'jo%'
ORDER BY first_name;

To find all employees with the first names whose the second character is h:
SELECT employee_id, first_name, last_name
FROM employees
WHERE
 first_name LIKE '_h%'
ORDER BY first_name;

© Yuriy Shamshin 18/18

To find all employees whose first names begin with S but not begin with Sh:
SELECT employee_id, first_name, last_name
FROM employees
WHERE
 first_name LIKE 'S%'
AND first_name NOT LIKE 'Sh%'
ORDER BY first_name;

The following table illustrates some patterns and their meanings:

Expression Meaning

LIKE ‘Databases' Is value Databases only

LIKE 'Kim%' Begins with Kim

LIKE '%er' Ends with er

LIKE '%ch%' Contains ch

LIKE 'Le_' Begins with Le and is followed by at most one character e.g., Les, Len…

LIKE '_uy' Ends with uy and is preceded by at most one character e.g., guy

LIKE '%are_' Contains are, begins with any number of characters and ends with at most one character

LIKE '_are%' Contains are, begins with at most one character and ends with any number of characters

