
© Yuriy Shamshin 1/18

SQL DML. INSERT, UPDATE, DELETE, SELECT Statements Overview.
Summary

• HR sample database
• INSERT Statement Overview
• UPDATE Statement Overview
• DELETE Statement Overview
• SELECT Statement Overview

o Select Queries and Relation Algebra Operations
o SELECT Statement Basic Syntax
o SELECT Statement Full Syntax
o Select Query - Order of Execution

• SQL Functions
o Numeric Aggregate Functions
o Numeric Arithmetic Functions
o Character Functions
o Date Functions
o Advanced Functions

SQL DML.
SQL Data Manipulation Language modifies the database instance by inserting, updating, deleting and selecting, its data. DML is responsible
for all forms data modification in a database. SQL contains the following set of commands in its DML section:

• INSERT INTO/VALUES
• UPDATE/SET/WHERE
• DELETE FROM/WHERE
• SELECT/FROM/WHERE

These basic constructs allow database programmers and users to enter data and information into the database and retrieve efficiently using a
number of sorting, filtering and grouping options with using different function and mathematical calculation.

© Yuriy Shamshin 2/18

HR sample database.
You can use SQL Tutorial site https://www.sqltutorial.org/seeit/ for online testing examples and exercises on real DB.

© Yuriy Shamshin 3/18

INSERT Statement Overview.
SQL provides the INSERT statement that allows you to insert data into a table. The INSERT statement allows you to:

1. Insert a single row into a table
2. Insert multiple rows into a table
3. Copy rows from a table to another table.

Insert one row into a table.

Syntax.
INSERT INTO table1 (column1, column3,...)
VALUES (value1, value3,...);

In this syntax:

1. The number of values must be the same as the number of columns. The columns and values must be the correspondent.
2. Before adding a new row, the database system checks for all integrity constraints e.g., FK constraint, PK constraint, CHECK constraint

and NOT NULL constraint. If one of these constraints is violated, the database system will issue an error and terminate the statement
without inserting any new row into the table.

3. If you don’t specify a column and its value in the INSERT statement when that column will take a default value specified in the table
structure (for example column2). The default value could be ‘string’, or 0, or a next integer value in a sequence, the current date/time, a
NULL value, etc.

4. If the row is inserted successfully, the database system returned the number of the affected rows: “Affected rows: 1”

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
INSERT INTO dependent (depFname, depLname, relationship, empId)
VALUES ('Ivan', 'Green', 'Son', 25); -- depId adding as default sequence value

You can check whether the row has been inserted successfully or not by using the following SELECT statement.
SELECT * FROM dependent
WHERE empId = 25;

© Yuriy Shamshin 4/18

Insert multiple rows into a table.

Syntax.
INSERT INTO table1
 (column1, column2,...)
VALUES
 (value1, value2,...),
 (value1, value2,...),
 ...;

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
INSERT INTO dependent
 (depFname, depLname, relationship, empId)
VALUES
 ('Max', 'Black', 'Son', 27),
 ('Alexa', 'Black', 'Doter', 27);

Copy rows from other tables.

Syntax. You can use the INSERT statement to query data from one or more tables and insert it into another table as follows:
INSERT INTO table2
 (column3, column4)
SELECT
 column1, column2
FROM table1
WHERE condition1;

In this syntax, you use a SELECT which is called a subselect instead of the VALUES clause.
Example.
INSERT INTO dependent_archive
SELECT
 *
FROM
 dependent;	

© Yuriy Shamshin 5/18

UPDATE Statement Overview.
To change existing data in a table, you use the UPDATE statement.

Syntax.
UPDATE table_name
SET
 column1 = value1,
 column2 = value3
[WHERE
 Condition];

In this syntax:

1. Indicate the table that you want to update in the UPDATE clause.
2. Specify the columns to modify in the SET clause. The columns that are not listed in the SET clause will save original values.
3. Specify which rows to update in the WHERE clause, any row that causes the condition in the WHERE to evaluate to true will be modified.
4. Because the WHERE clause is optional, therefore, if you omit it, the all the rows in the table will be affected.

One row UPDATE example.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
To update 25th empId name from Green to Blue, you can use the following UPDATE statement:
UPDATE employees
SET
 empLname = 'Blue'
WHERE
 empId = 25;

You can verify it by using the following SELECT statement.
SELECT empId, empLname FROM employees
WHERE empId = 25;

© Yuriy Shamshin 6/18

Multiple rows UPDATE example.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
Now, 27th empId wants to change all her children’s last names from Black to White.
UPDATE dependent
SET
 depLname = 'White'
WHERE
 empId = 27;

In this case, you need to update all dependents in the dependent table.

UPDATE with subquery example.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
To make sure that the names of children are always matched with the name of parents in the employees table, you use the following statement:
UPDATE dependent
SET depLname = (
 SELECT
 empLname
 FROM
 employees
 WHERE
 empId = dependent.empId
);

Because the WHERE clause is omitted, the UPDATE statement updated all rows in the dependents table.

In the SET clause, instead of using the literal values, we used a subquery to get the corresponding last name value from the employees table.

© Yuriy Shamshin 7/18

DELETE Statement Overview.
To remove one or more rows from a table, you can use the DELETE statement.

Syntax.
DELETE
FROM
 table_name
WHERE
 condition;

In this syntax:

1. Provide the name of the table where you want to remove rows.
2. Specify the condition in the WHERE clause to identify the rows that need to be deleted.
3. If you omit the WHERE clause all rows in the table will be deleted. Therefore, you should always use the DELETE statement with caution.
4. The DELETE statement does return the number of rows deleted.

DELETE one row in a table.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
Employee id 25, wants to remove Ivan Blue from his dependent list. We know that Ivan Blue has the dependent id 16, so we use the following
DELETE statement to remove Ivan Blue from the dependent table.
DELETE FROM dependent
WHERE depId = 16;

Because the WHERE clause contains the primary key expression that identifies Fred, the DELETE statement removes just one row.

You can verify that the row with the dependent id 16 has been deleted by using the following statement:
SELECT COUNT(*)
FROM dependent
WHERE depId = 16;

© Yuriy Shamshin 8/18

DELETE multiple rows example.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
To delete multiple rows in a table, you use the condition in the WHERE clause to identify the rows that should be deleted. For example, the
following statement uses the IN operator to include the dependents of the employees with the id is 25, 26, or 27.
DELETE FROM dependent
WHERE
 empId IN (25, 26, 27);

DELETE rows from related tables.

Example for DB: dependent(depId, depFname, depLname, relationship, empId) >0---have---|- employees(empId, empFname, empLname, …)
One employee may have zero or many dependents while one dependent belongs to only one employee.
Logically, a dependent cannot exist without referring to an employee. When you delete an employee, his dependents must be deleted as well.
To remove the employee id 27 and all the employee’s dependents, you need to execute two DELETE statements as follows:
DELETE FROM employees
WHERE
 empId = 27;

DELETE FROM dependent
WHERE
 empId = 27;

Automatically DELETE rows from related tables (equivalent).

Most database systems support the foreign key constraint so that when one row from a table is deleted, the rows in the foreign key tables are
also removed automatically. After DELETE empId=27 from employees table, all the rows with employee_id 27 from dependent table are also
removed automatically:

DELETE FROM employees
WHERE
 empId = 27;

© Yuriy Shamshin 9/18

SELECT Statement Overview.

SQL Select Queries and Relation Algebra Operations
• SQL queries use the SELECT statement
• Very central part of SQL language - concepts appear in all DML commands
• General form is:

SELECT A1, A2, ...
 FROM r1, r2, ...
 WHERE P;

– Ai are attributes (columns)
– ri are the relations (tables)
– P is the selection predicate (rows)

Operations

SELECT A1, A2, ... – corresponds to a relational algebra Project operation (columns)

 Π(…)
FROM r1, r2, ... – corresponds to a Cartesian product (tables) of relations r1, r2, …

 r1×r2×…
WHERE P – corresponds to a Selection operation (rows). Can be omitted. When left off, P = true

 σP(…)
SELECT A1, A2, ... FROM r1, r2, ... WHERE P; Assembling it all – equivalent to:

 Π(σP(r1×r2×…))

© Yuriy Shamshin 10/18

SELECT Statement Basic Syntax.
The following illustrates the basic syntax of the SELECT statement that retrieves data from a single table.

SELECT
 column1, column2, column3, ...
FROM
 table_name;

In this syntax, you specify a list of comma-separated columns from which you want to query the data in the SELECT clause and specify the
table name in the FROM clause. When evaluating the SELECT statement, the database system evaluates the FROM clause first and then the
SELECT clause.

The semicolon (;) is not the part of a query. Typically, the database system uses the semicolon to separate two SQL queries.

In case you want to query data from all columns of a table, you can use the asterisk (*) operator instead of the column list as shown below.

SELECT
 *
FROM
 table_name;

Using the asterisk (*) operator is only convenient for querying data interactively through an SQL client application. However, if you use the
asterisk (*) operator in embedded statements in your application, you may have some potential problems.

Best practice: specify exactly which columns you want to receive data in, in what order and with what column name.

For example
SELECT author_name as COVID_19_risk_author
FROM book_author
WHERE age > 60;

This command will yield the names of authors from the relation book_author whose age is greater than 60 (Author with COVID-19 Risk).

© Yuriy Shamshin 11/18

SELECT Statement Full Syntax
To query data from a table, you use the SQL SELECT statement, where contains the syntax for selecting columns, selecting rows, grouping
data, joining tables, and performing simple calculations.

-- Complete SELECT query
SELECT DISTINCT column, AGG_FUNC(column_or_expression), …
FROM mytable
 JOIN another_table
 ON mytable.column = another_table.column
 WHERE constraint_expression
 GROUP BY column
 HAVING constraint_expression
 ORDER BY column ASC/DESC
 LIMIT count OFFSET COUNT;

Each query begins with finding the data that we need in a database, and then filtering that data down into something that can be processed
and understood as quickly as possible. Because each part of the query is executed sequentially, it's important to understand the order of
execution so that you know what results are accessible where.

The SELECT statement is one of the most complex commands in SQL include many clauses:

• SELECT − This is one of the fundamental query command of SQL. It is similar to the projection operation of relational algebra. It selects
the attributes based on the condition described by WHERE clause.

• FROM − This clause takes a relation name as an argument from which attributes are to be selected/projected. In case more than one
relation names are given, this clause corresponds to Cartesian product.

• JOIN – for querying data from multiple related tables
• WHERE – This clause defines predicate or conditions for filtering data based on a specified condition.
• GROUP BY – for grouping data based on one or more columns
• HAVING – for filtering groups
• ORDER BY – for sorting the result set
• LIMIT – for limiting rows returned

You will learn about these clauses in the subsequent tutorials on Practice Works PW-01 and PW-02.

© Yuriy Shamshin 12/18

SELECT - Order of Query Execution
1. FROM and JOINs
The FROM clause, and subsequent JOINs are first executed to determine the total working set of data that is being queried. This includes subqueries in
this clause, and can cause temporary tables to be created under the hood containing all the columns and rows of the tables being joined.

2. WHERE
Once we have the total working set of data, the first-pass WHERE constraints are applied to the individual rows, and rows that do not satisfy the constraint
are discarded. Each of the constraints can only access columns directly from the tables requested in the FROM clause. Aliases in the SELECT part of the
query are not accessible in most databases since they may include expressions dependent on parts of the query that have not yet executed.

3. GROUP BY
The remaining rows after the WHERE constraints are applied are then grouped based on common values in the column specified in the GROUP BY clause.
As a result of the grouping, there will only be as many rows as there are unique values in that column. Implicitly, this means that you should only need to
use this when you have aggregate functions in your query.

4. HAVING
If the query has a GROUP BY clause, then the constraints in the HAVING clause are then applied to the grouped rows, discard the grouped rows that don't
satisfy the constraint. Like the WHERE clause, aliases are also not accessible from this step in most databases.

5. SELECT
Any expressions in the SELECT part of the query are finally computed.

6. DISTINCT
Of the remaining rows, rows with duplicate values in the column marked as DISTINCT will be discarded.

7. ORDER BY
If an order is specified by the ORDER BY clause, the rows are then sorted by the specified data in either ascending or descending order. Since all the
expressions in the SELECT part of the query have been computed, you can reference aliases in this clause.

8. LIMIT / OFFSET. Finally, the rows that fall outside the range specified by the LIMIT and OFFSET are discarded, leaving the final set of rows to be returned
from the query.

CONCLUSION. Not every query needs to have all the parts we listed above, but a part of why SQL is so flexible is that it allows developers and data
analysts to quickly manipulate data without having to write additional code, all just by using the above clauses.

© Yuriy Shamshin 13/18

SQL Functions
Read topic MySQL Functions https://www.w3schools.com/sql/sql_ref_mysql.asp

SQL functions help simplify different types of operations on the data. SQL supports fife types of functions:

• Numeric Aggregate Functions
• Numeric Arithmetic Functions
• Character Functions
• Date Functions
• Advanced Functions

The functions are used as part of a select-list of a query, or if they refer to a specific row, they may be used in a WHERE clause. They are
used to modify the values or format of data being retrieved.

DB Scheme for Examples:

COMPANY
EMP>|---work---|-DEPT (1,m:1,1)
EMP(empno, ename, job, mgr, hiredate, sal, comm, deptno)
DEPT(deptno, dname, loc)

SELECT * FROM dept;

SELECT * FROM emp;

© Yuriy Shamshin 14/18

Numeric Aggregate Functions

All aggregate functions (exception of count) operate on numerical columns. All of the aggregate functions operate on a number of rows:
1. avg(column) - computes the average value and ignores null values

SELECT avg(sal) FROM emp; - gives the average salary in the employees table
2. sum(column) - computes the total of all the values in the specified column and ignores null values

sum(comm) - calculates the total commission paid to all employees
3. min(column) - finds the minimum value in a column

min(sal) - returns the lowest salary
4. max(column) - finds the maximum value in a column

max(comm) - returns the highest commission
5. count(column) - counts the number of values and ignores nulls

count(empno) - counts the number of employees
Because an aggregate function operates on a set of values, it is often used with the GROUP BY clause of the SELECT statement. The
GROUP BY clause divides the result set into groups of values and the aggregate function returns a single value for each group.

© Yuriy Shamshin 15/18

Numeric Arithmetic Functions

The most commonly used arithmetic functions are as follows:
1. greatest(object-list) - returns the greatest of a list of values (items over coma)

greatest(sal,comm) - returns whichever of the SALaries or COMMission attributes has the highest value
2. least(object-list) - returns the smallest of a list of values (items over coma)

least(sal,comm) - returns whichever of the SALaries or COMMission attributes has the lowest value
3. round(number[,d]) - rounds the number to d digits right of the decimal point (d can be negative)

round(sal,2) - rounds values of the SAL attribute to two decimal places
4. trunc(number,d) - truncates number to d decimal places (d can be negative). Note: The difference between the round and truncate

functions is that round will round up digits of five or higher, whilst trunc always rounds down.
trunc(sal,2) - truncates values of the SAL attribute to two decimal places

5. abs(number) - returns the absolute value of the number
abs(comm-sal) - returns the absolute value of COMM - SAL; that is, if the number returned would be negative, the minus sign is

discarded
6. sign(number) - returns 1 if number greater than zero, 0 if number = zero, -1 if number less than zero

sign(comm-sal) - returns 1 if COMM - SAL > 0, 0 if COMM - SAL = 0, and - 1 if COMM - SAL < 0
7. mod(number1,number2) - returns the remainder when number1 is divided by number2

mod(sal,comm) - returns the remainder when SAL is divided by COMM
8. sqrt(number) - returns the square root of the number. If the number is less than zero then sqrt returns null

sqrt(sal) - returns the square root of salaries
9. to_char(number[picture]) - converts a number to a character string in the format specified

to_char(sal,9999.99) - represents salary values with four digits before the decimal point, and two afterwards
10. decode(column,starting-value,substituted-value..) - substitutes alternative values for a specified column

decode(comm,100,200,200,300,100) - returns values of commission increased by 100 for values of 100 and 200, and displays
any other comm values as if they were 100

11. ceil(number) - rounds up a number to the nearest integer
ceil(sal) - rounds up salaries to the nearest integer

12. floor(number) - truncates the number to the nearest integer
floor(sal) - rounds down salary values to the nearest integer

© Yuriy Shamshin 16/18

Character Functions

The most commonly used character string functions are as follows:
1. string1 || string2 - concatenates (links) string1 with string2

deptno || empno - concatenates the employee number with the department number into one column in the query result
2. distinct <column> - lists the distinct values of the specific column

distinct job - lists all the distinct values of job in the JOB attribute
3. length(string) - finds number of characters in the string

length(ename) - returns the number of characters in values of the ENAME attribute
4. substr(column,start-position[,length]) - extracts a specified number of characters from a string

substr(ename,1,3) - extracts three characters from the ENAME column, starting from the first character
5. upper(string) - converts all characters in the string to upper case

upper(ename) - converts values of the ENAME attribute to upper case
6. lower(string) - converts all characters in the string to lower case

lower(ename) - converts values of the ENAME attribute to lower case
7. lpad(string,len[,char]) - left pads the string with filler characters

lpad(ename,10) - left pads values of the ENAME attribute with filler characters (spaces)
8. rpad(string,len[,char]) - right pads the string with filler characters

rpad(ename,10) - right pads values of the ENAME attribute with filler characters (spaces)
9. initcap(string) - capitalises the initial letter of every word in a string

initcap(job) - starts all values of the JOB attribute with a capital letter
10. translate(string,from,to) - translates the occurrences of the 'from' string to the 'to' characters

translate(ename,'ABC','XYZ') - replaces all occurrences of the string 'ABC' in values of the ENAME attribute with the string 'XYZ'
11. ltrim(string,set) - trims all characters in a set from the left of the string

ltrim(ename,' ') - removes all spaces from the start of values of the ENAME attribute
12. rtrim(string,set) - trims all characters in the set from the right of the string

rtrim(job,'.') - removes any full-stop characters from the right-hand side of values of the JOB attribute

© Yuriy Shamshin 17/18

Date Functions

The date functions in most commercially available database systems are quite rich, reflecting the fact that many commercial applications are
very date driven. The most commonly used date functions in SQL are as follows:

1. sysdate, curdate, now - returns the current date & time
SELECT now(); return date-time

2. year, month, day, hour, minute, second(date) - returns the part for a given date
SELECT year(hiredate), ename FROM emp;

3. quarter, week, weekday(date) - returns the quarter or week or weekday number for a given date

SELECT quarter(now());
4. add-months(date, number) - adds a number of months from/to a date (number can be negative).

add-months(hiredate, 3) - this adds three months to each value of the HIREDATE attribute
5. months-between(date1, date2) - subtracts date2 from date1 to yield the difference in months.

months-between(sysdate, hiredate) - returns the number of months between the current date & the dates employees were hired
6. last-day(date) - moves a date forward to last day in the month.

last-day(hiredate) - this moves hiredate forward to the last day of the month in which they occurred
7. next-day(date,day) - moves a date forward to the given day of week.

next-day(hiredate,'monday') - this returns all hiredates moved forward to the Monday following the occurrence of the hiredate
8. round(date[,precision]) - rounds a date to a specified precision.

round(hiredate,'month') - this displays hiredates rounded to the nearest month
9. trunc(date[,precision]) - truncates a date to a specified precision.

trunc(hiredate,'month') - this displays hiredates truncated to the nearest month
10. decode(column,starting-value,substituted-value) - substitutes alternative values for a specified column.

decode(hiredate,'25-dec-99','christmas day',hiredate) - this displays any hiredates of the 25th of December, 1999, as Christmas
Day, and any default values of hiredate as hiredate

© Yuriy Shamshin 18/18

Advanced Functions

Function Description

BIN Returns a binary representation of a number

CAST Converts a value (of any type) into a specified datatype

COALESCE Returns the first non-null value in a list

CONNECTION_ID Returns the unique connection ID for the current connection

CONV Converts a number from one numeric base system to another

CONVERT Converts a value into the specified datatype or character set

CURRENT_USER Returns the user and host name for the MySQL account that the server used to authenticate the current client

DATABASE Returns the name of the current database

IF Returns a value if a condition is TRUE, or another value if a condition is FALSE

IFNULL Return a specified value if the expression is NULL, otherwise return the expression

ISNULL Returns 1 or 0 depending on whether an expression is NULL

NULLIF Compares two expressions and returns NULL if they are equal. Otherwise, the first expression is returned

SESSION_USER Returns the current MySQL user name and host name

VERSION Returns the current version of the MySQL database

