
© Yuriy Shamshin 1/24

SQL Overview. SQL DDL. Data Types.
Summary

• SQL overview.
o SQL Syntax.
o SQL DDL
o SQL DML
o SQL DCL
o SQL TCL

• MySQL DDL Realization
o MySQL Create/Show/Drop Databases
o MySQL Create/Alter/Drop Tables
o ER Diagram Forward Engineering

• MySQL Data Types
o Numeric Data Types
o Date/Time Data Types
o Text Data Types
o Null Data.
o Data Types Definition Example

• SQL Cheat Sheet.

© Yuriy Shamshin 2/24

SQL Overview
SQL stands for Structured Query Language. SQL is a programming language for Relational Databases. It is designed over relational algebra
and tuple relational calculus. SQL comes as a package with all major distributions of RDBMS.

Starting MySQL: mysql client starts using a "Command line":

mysql -u username -p password
mysql> use database_name;

SQL include:

• DML – Data Manipulation Language;
• DDL – Data Definition Language;
• DCL – Data Control Language;
• TCL – Transactional Control Language.

SQL is a Standard - BUT....
Although SQL is an ANSI/ISO standard, there are different versions of the SQL language. However, to be compliant with the ANSI standard,
they all support at least the major commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE) in a similar manner.

Note: Most of the SQL database programs also have their own proprietary extensions in addition to the SQL standard!

SQL syntax features and Best practices short:
• Upper and lower case letters are not distinguished in SQL commands (except for the contents of character strings).
• Use upper case letters for SQL keywords i.e. "DROP SCHEMA IF EXISTS ‘MyDatabase’;"
• Good, portable rules: First character should be alphabetical; Remaining characters should be alphanumeric or underscore ‘_’.
• Use same case in DML that you use in DDL.
• End all your SQL commands using semi colons ';'.
• Avoid using spaces in schema, table and field names. Use underscores instead to separate schema, table or field names.
• The character and character string are enclosed in single quotes: 'A', '2', 'line', 'other line'
• A one-line comment starts with the characters '--'.
• Multi-line comment is in the characters / * ... * /.

	

© Yuriy Shamshin 3/24

SQL Syntax
SQL is a declarative language, therefore, its syntax reads like a
natural language. An SQL statement begins with a verb that
describes the action, for example, SELECT, INSERT, UPDATE
or DELETE. Following the verb are the subject and predicate.

A predicate specifies conditions that can be evaluated as true,
false, or unknown.

See the following SQL statement à

As you see, it reads like a normal sentence.

Get the first names of employees who were hired in 2000.

The SELECT first_name, FROM employees, and WHERE are clauses in the SQL statement. Some clauses are mandatory e.g., the SELECT
and FROM clauses whereas others are optional such as the WHERE clause.

SQL commands

SQL is made up of many commands terminated with a semicolon (;). For example, the following are two different SQL commands.

SELECT
 first_name, last_name
FROM
 employees;

DELETE FROM employees
WHERE
 hire_date < '1990-01-01';

Each command is composed of tokens that can be literals, keywords, identifiers, or expressions. Tokens are separated by space, tabs,
or newlines.

© Yuriy Shamshin 4/24

Literals

Literals are explicit values which are also known as constants. SQL provides three kinds of literals: string, numeric, and binary.

String literal consists of one or more alphanumeric characters surrounded by single quotes, for example:

'John'
'1990-01-01'
'50'
''

50 is a number. However, if you surround it with single quotes e.g., '50', SQL treats it as a string literal. ‘’ - clear string. Typically, SQL is case
sensitive with respect to string literals, so the value 'John' is not the same as 'JOHN'.

Numeric literals are the integer, decimal, or scientific notation, for example:

200
-5
6.0221415E23

Binary literals. SQL represents binary value using the notation x'0000', where each digit is hexadecimal value, for example:

x'01'
x'0f0ff'

A simple rule for us to remember what to use in which case (that is part of SQL-92 standard):
[S]ingle quotes are for [S]trings ; [D]ouble quotes are for [D]atabase identifiers;

Keywords

SQL has many keywords that have special meanings such as SELECT, INSERT, UPDATE, DELETE, DROP, WHERE, FROM, SET, VIEW,
TABLE, INT, VARCHAR, BETWEEN, NULL, etc.

These keywords are the reserved words, therefore, you cannot use them as the name of tables, columns, indexes, views, stored procedures,
triggers, or other database objects.

© Yuriy Shamshin 5/24

Identifiers

Identifiers refer to specific objects in the database such as tables, columns, indexes, etc.

SQL is case-insensitive with respect to keywords and identifiers. The following statements are equivalent.

Select * From employees;
SELECT * FROM EMPLOYEES;
select * from employees;
SELECT * FROM employees;

To make the SQL commands more readable and clear, we will use the SQL keywords in uppercase and identifiers in lower case.

Comments

To document SQL statements, you use the SQL comments. When parsing SQL statements with comments, the database engine ignores the
characters in the comments.

A comment is denoted by two consecutive hyphens (--) that allow you to comment the remaining line. See the following example.

SELECT
 employee_id, salary
FROM
 employees
WHERE
 salary < 3000;-- employees with low salary

To document the code that can span multiple lines, you use the multiline C-style notation (/**/) as the shown in the following statement:

/* increase 5% for employees
whose salary is less than 3,000 */
UPDATE employees
SET
 salary = salary * 1.05
WHERE
 salary < 3000;

© Yuriy Shamshin 6/24

SQL DDL - Data Definition Language

SQL uses the following set of commands to define database schema:
• Create,
• Drop,
• Alter.

CREATE
Creates new databases, tables, index and views from RDBMS.
For example
Create database tutorialspoint;
Create table article;
Create view for_students;

DROP
Drops commands, views, tables, index and databases from RDBMS.
For example−
Drop object_type object_name;
Drop database tutorialspoint;
Drop table article;
Drop view for_students;

ALTER
Modifies database schema.
Syntax.
Alter object_type object_name parameters;

For example.
Alter table article add subject varchar;

This command adds an attribute in the relation article with the name subject of string type.

© Yuriy Shamshin 7/24

SQL DML - Data Manipulation Language
SQL is equipped with data manipulation language (DML). DML modifies the database instance by inserting, updating and deleting its data.
DML is responsible for all forms data modification in a database. SQL contains the following set of commands in its DML section:

• SELECT/FROM/WHERE
• INSERT INTO/VALUES
• UPDATE/SET/WHERE
• DELETE FROM/WHERE

These basic constructs allow database programmers and users to enter data and information into the database and retrieve efficiently using a
number of filter options.

SELECT/FROM/WHERE
To query data from a table, you use the SQL SELECT statement, where contains the syntax for selecting columns, selecting rows, grouping
data, joining tables, and performing simple calculations.

The SELECT statement is one of the most complex commands in SQL.

• SELECT − This is one of the fundamental query command of SQL. It is similar to the projection operation of relational algebra. It selects
the attributes based on the condition described by WHERE clause.

• FROM − This clause takes a relation name as an argument from which attributes are to be selected/projected. In case more than one
relation names are given, this clause corresponds to Cartesian product.

• WHERE – This clause defines predicate or conditions for filtering data based on a specified condition.
• ORDER BY – for sorting the result set
• LIMIT – for limiting rows returned
• JOIN – for querying data from multiple related tables
• GROUP BY – for grouping data based on one or more columns
• HAVING – for filtering groups

You will learn about these clauses in the subsequent tutorials on Practice Works PW-01 and PW-02.

© Yuriy Shamshin 8/24

Syntax
The following illustrates the basic syntax of the SELECT statement that retrieves data from a single table.

SELECT
 column1, column2, column3, ...
FROM
 table_name;

In this syntax, you specify a list of comma-separated columns from which you want to query the data in the SELECT clause and specify the
table name in the FROM clause. When evaluating the SELECT statement, the database system evaluates the FROM clause first and then the
SELECT clause.

The semicolon (;) is not the part of a query. Typically, the database system uses the semicolon to separate two SQL queries.

In case you want to query data from all columns of a table, you can use the asterisk (*) operator instead of the column list as shown below.

SELECT
 *
FROM
 table_name;

For example
SELECT author_name as COVID_19_risk_author
FROM book_author
WHERE age > 60;

This command will yield the names of authors from the relation book_author whose age is greater than 60 (Author with COVID-19 Risk).

© Yuriy Shamshin 9/24

INSERT INTO/VALUES
This command is used for inserting values into one or many rows of a table (relation).

Syntax
INSERT INTO table (column1 [, column2, column3 ...]) VALUES (value1 [, value2, value3 ...])

For example one row
INSERT INTO tutorialspoint (Author, Subject) VALUES ("anonymous", "computers");

For example many rows

INSERT INTO Course (course_id, course_duration, course_cost)
VALUES
 ('3', '64', '25'),
 ('2', NULL, NULL);

UPDATE/SET/WHERE
This command is used for updating or modifying the values of columns in a table (relation). Without WHERE clause updated all table rows.

Syntax

UPDATE table_name SET column_name = value [, column_name = value ...] [WHERE condition]

For example

UPDATE tutorialspoint SET Author="webmaster" WHERE Author="anonymous";

DELETE/FROM/WHERE
This command is used for removing one or more rows from a table (relation). Without WHERE clause deleted all table rows.

Syntax

DELETE FROM table_name [WHERE condition];

For example

DELETE FROM tutorialspoints
 WHERE Author="unknown";

© Yuriy Shamshin 10/24

SQL DCL - Data Control Language
DCL includes commands such as GRANT and REVOKE which mainly deals with the rights, permissions and other controls of the database
system.

GRANT - command gives user’s access privileges to database.
grant select, insert, delete, references, update to userName

REVOKE -withdraw user’s access privileges given by using the GRANT command.
revoke insert, delete, references, update to userName

PhpMyAdmin usage for grant/revoke privileges to Database, Table and Global:

© Yuriy Shamshin 11/24

© Yuriy Shamshin 12/24

SQL TCL - Transaction Control Language
TCL commands deals with the transaction within the database.

BEGIN – begin a Transaction.

COMMIT– commits a Transaction.

ROLLBACK– rollbacks a transaction in case of any error occurs.

SAVEPOINT–sets a savepoint within a transaction.

SET TRANSACTION–specify characteristics for the transaction.

© Yuriy Shamshin 13/24

MySQL DDL Realization
MySQL Create/Show/Drop Databases
CREATE DATABASE is the SQL command for creating a database. Imagine you need to create a database with name "movies". You can do
it by executing following SQL command.

CREATE DATABASE movies;

Note: you can also use the command CREATE SCHEMA instead of CREATE DATABASE

You can see list of existing databases by running following SQL command.

SHOW DATABASES

You can delete of existing databases by running following SQL command.

DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

Now let's improve our SQL query adding more parameters and specifications.

IF NOT EXISTS clause

A single MySQL server could have multiple databases. If you are not the only one accessing the same MySQL server or if you have to deal
with multiple databases there is a probability of attempting to create a new database with name of an existing database . IF NOT EXISTS let
you to instruct MySQL server to check the existence of a database with a similar name prior to creating database.

CREATE DATABASE IF NOT EXISTS movies;

Collation and Character Set

Collation is set of rules used in comparison. Many people use MySQL to store data other than English. Data is stored in MySQL using a
specific character set. The character set can be defined at different levels viz, server , database , table and columns.

© Yuriy Shamshin 14/24

You need to select the rules of collation which in turn depend on the character set chosen. For instance, the latin1 character set uses the
latin1_swedish_ci collation which is the Swedish case insensitive order.

The best practice while using local languages like Arabic, Chinese, Russian etc is to select Unicode (utf-8) character set which has several
collations or just stick to default collation utf8-general-ci.

CREATE DATABASE IF NOT EXISTS movies CHARACTER SET utf8 COLLATE utf8_general_ci

You can find the list of all collations and character sets here (http://dev.mysql.com/doc/refman/5.5/en/charset-charsets.html).

MySQL Create Tables
Syntax. Tables can be created using CREATE TABLE statement and it actually has the following syntax.
CREATE TABLE [IF NOT EXISTS] [`DatabaseName`.]`TableName` (
 `fieldname1` dataType1 [optional parameters1]
 [, `fieldname2` dataType2 [optional parameters2]…
 [, table optional parameters]
 [, table optional parameters2]…)
[ENGINE = storage Engine];

• "CREATE TABLE" is the one responsible for the creation of the table in the database.
• "[IF NOT EXISTS]" is optional and only create the table if no matching table name is found.
• "`fieldName`" is the name of the field and "data Type" defines the nature of the data to be stored in the field.
• "[optional parameters]" - additional information about a field such as "AUTO_INCREMENT" , NOT NULL etc.

Example

CREATE TABLE IF NOT EXISTS `MyFlixDB`.`Members` (
 `membership_number` INT AUTO_INCREMENT ,
 `full_names` VARCHAR(150) NOT NULL ,
 `gender` VARCHAR(6) ,
 `date_of_birth` DATE ,
 `postal_address` VARCHAR(255) ,
 PRIMARY KEY (`membership_number`))
ENGINE = InnoDB;

© Yuriy Shamshin 15/24

Primary Key Constraints

• The CREATE TABLE syntax also allows “[table optional parameters”] - additional information about a table such as PRIMARY KEY.
• Table optional parameters generally specified after attributes are listed.

Example with attribute constraint
CREATE TABLE account (
 acct_id CHAR(10) PRIMARY KEY,
 person_name CHAR(20),
 email VARCHAR(255),
 balance NUMERIC(12, 2)
);

Example with table constraint
CREATE TABLE account (
 acct_id CHAR(10),
 person_name CHAR(20),
 email VARCHAR(255),
 balance NUMERIC(12, 2),
 PRIMARY KEY (acct_id)
);

• Database won’t allow two rows with same account ID
• A primary key can have multiple attributes

Example
CREATE TABLE depositor (
 customer_name VARCHAR(30),
 acct_id CHAR(10),
 PRIMARY KEY (customer_name, acct_id)
);

• A table can’t have multiple primary keys – (obvious)
• Many other kinds of constraints too – Will cover in future lectures!	

© Yuriy Shamshin 16/24

ER Diagram Forward Engineering
Many Offline and Online CASE Tools (for example, MySQL Workbench, phpMyAdmin, DB Designer, Adminer) has utilities that support forward
engineering process of translating a logical model into a physical implement automatically (SQL scripts to create the physical database).

MySQL Workbench Create SQL Example DB Designer Create SQL Example

© Yuriy Shamshin 17/24

MySQL Data Types
Data types define the nature of the data that can be stored in a particular column of a table

MySQL has many categories of data types:

1. Numeric,
2. Text
3. Date/Time.
4. NULL
5. and other

Read more on
• https://dev.mysql.com/doc/refman/8.0/en/data-types.html,
• https://www.w3schools.com/sql/sql_datatypes.asp,
• https://www.sqltutorial.org/sql-data-types/

Numeric Data Types

Data Type Storage Range Description

BIT or

BIT[(M)]

1 Byte 0 or 1 A bit-value type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

TINYINT or

TINYINT[(M)] [UNSIGNED]

1 Byte -128 to 127 normal

0 to 255 unsigned

Integer. Can be declared positive using the UNSIGNED keyword, then the column elements cannot be
assigned a negative value.

Optional parameter M - the number of characters allocated for the number of characters.

Examples:

TINYINT - Stores any number in the range from -128 to 127.

TINYINT UNSIGNED - Stores any number in the range from 0 to 255.

TINYINT (2) - it is assumed that the values will be two-digit, but in fact will store three-digit ones.

© Yuriy Shamshin 18/24

BOOL or

BOOLEAN

1 Byte 0 or 1 These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true.

SMALLINT or

SMALLINT[(M)] [UNSIGNED]

2 Byte -32768 to 32767 normal

0 to 65535 unsigned

Similar to TINYINT, but with a large range.

MEDIUMINT or

MEDIUMINT[(M)] [UNSIGNED]

3 Byte -8388608 to 8388607 normal

0 to 16777215 unsigned

Similar to TINYINT, but with a large range.

INT or

INT[(M)] [UNSIGNED]

4 Byte -2147483648 to 2147483647 normal

0 to 4294967295 unsigned

Similar to TINYINT, but with a large range.

BIGINT or

BIGINT[(M)] [UNSIGNED]

8 Byte -2ˆ63 to 2ˆ63-1 normal

0 to 2ˆ64-1 unsigned

Similar to TINYINT, but with a large range.

FLOAT (M,D) 4 Byte min value +(-) 1.175494351 * 10ˆ-39

max value +(-) 3. 402823466 * 10ˆ38

Real number (floating point). May have a parameter UNSIGNED, prohibiting negative numbers, but the
range of values from this will not change. M - the number allocated to the number of characters. D is the
number of characters of the fractional part.

Example:

FLOAT (5,2) - will store numbers of 5 characters, 2 of which will come after the decimal point (for example:
46.58).

DOUBLE (M,D) 8 Byte min value +(-) 2.2250738585072015*10ˆ-308

max value +(-) 1.797693134862315 * 10ˆ308

Similar to FLOAT, but with a large range.

DECIMAL(M,D) or

DEC(M,D) or

NUMERIC(M,D)

M+2 Bytes depend on parameters M and D A DOUBLE stored as a string , allowing for a fixed decimal point. Choice for storing currency values.
They are used for increased accuracy values, for example, for monetary data. M is the number of characters
allocated for the number of characters (the maximum value is 64). D is the number of decimal places
(maximum value is 30).

Example:

DECIMAL (5,2) - will store numbers from -999.99 to 999.99.

© Yuriy Shamshin 19/24

Text Data Types

Data Type Storage Range Description

CHAR(M) or BINARY(M) M characters 0 to 255 A fixed long string. The length can be specified as a value from 0 to 65535.

BINARY similar to CHAR, difference is texts are stored in binary format.

Example:

CHAR (6) – stores strings of 6 characters and takes 6 bytes. For example, any of the following values: an empty string ‘ ‘, ‘Kim’,
‘Ivan’, ‘Sergey’ will occupy 6 bytes of memory. And when you try to enter the value ‘Alexander’, it will be truncated to ‘Alexan’.

VARCHAR(M) or VARBINARY(M) M+1 characters 0 to 65535 A variable long string. The length can be specified as a value from 0 to 65535. The effective maximum length of a VARCHAR
is subject to the maximum row size (65535 bytes, which is shared among all columns) and the character set used (1B, 2B, etc).

VARBINARY similar to VARCHAR, difference is texts are stored in binary format.

Example:

VARCHAR (3) - stores strings with a maximum of 3 characters, but an empty string ' ' occupies 1 byte of memory, a string 'a' - 2
bytes, a string 'aaa' - 4 bytes (if 1 byte character set use). Values greater than 3 characters will be truncated to 3.

TINYTEXT M+1 characters 0 to 255 A string with a maximum length of 255 characters.

TEXT or BLOB M+2 characters 0 to 65535 Allow you to store large amounts of text. The TEXT type is used to store text, and BLOB – to store images, sound, files, etc.

MEDIUMTEXT or MEDIUMBLOB M+3 characters 0 to 2ˆ24-1 Similar to TEXT or BLOB, but with a large range.

LONGTEXT or LONGBLOB M+4 characters 0 to 2ˆ32-1 Similar to TEXT or BLOB, but with a large range.

ENUM('value1',...,'valueN') 1 or 2 bytes 0 to 65535 elements Strings of this type can take only one of the values of the specified set.

Example:

ENUM ('yes', 'no', ‘I don’t know’) - only one of the available values can be stored in a column with this type. It is convenient to
use if it is provided that the answer to the question should be stored in the column.

SET('value1',...,'valueN') 1,2,3,4,8 bytes 1-8, 9-16, 17-24,
25-32, 33-64
elements

This is also used for storing text values chosen from a list of predefined text values. It can have multiple values.

Example: SET ('first', 'second', ‘third’) - Strings may accept any or several or all elements from the values of the specified set, or
the value may be absent altogether.

© Yuriy Shamshin 20/24

Date/Time Data Types

Data Type Storage Range Description

DATE 3 bytes '1000-01-01' to '9999-12-31' Designed for storing dates. The first value is the year in the format "YYYY", after a minus the month in the format "MM", and then the day
in the format "DD". The separator can be not only a minus, but any character other than a digit.

Example:

CHAR (6) – stores strings of 6 characters and takes 6 bytes. For example, any of the following values: an empty string ‘ ‘, ‘Kim’, ‘Ivan’,
‘Sergey’ will occupy 6 bytes of memory. And when you try to enter the value ‘Alexander’, it will be truncated to ‘Alexan’.

TIME 3 bytes ‘-838:59:59’ to ‘838:59:59’ Designed to store the time of day. The value is entered and stored in the usual format: hh: mm: ss, where hh is hours, mm is minutes, ss
is seconds. Any character other than a digit can be used as a separator.

DATETIME 8 bytes '1000-01-01 00:00:00' to
'9999-12-31 23:59:59'

Designed for storage of both date and time of day. The value is entered and stored in the format: YYYY-MM-DD hh: mm: ss. Separators
can be any characters other than numbers.

TIMESTAMP 4 bytes '1970-01-01 00:00:00' to
'2037-12-31 23:59:59'

Designed to store the date and time of day as the number of seconds that have passed since midnight on January 1, 1970 (the beginning
of the UNIX era). The value is entered in the format: YYYYMMDDHHMMSS.

YEAR(M) 1 byte 1970 to 2069 for М=2

1901 to 2155 for М=4

Designed for storage only a year. M - sets the format of the year. For example, YEAR (2) is 70, and YEAR (4) is 1970. If parameter M is
not specified, then by default it is considered to be 4.

Null Data
In fact, this is a pointer to the possibility of a lack of value, i.e. required and optional fields. In order to store such information in the database,
two values are used:

• NOT NULL (value cannot be absent) for fields login and password,
• NULL (value may be absent) for the fields date of birth and gender.
• By default, all columns are set to NOT NULL, so you can omit it explicitly.

Example:

create table users (login varchar(20), passw varchar(15), gender enum('man', 'woman') NULL, dob NULL); 	

© Yuriy Shamshin 21/24

Data Types Definition Example.
Now let's see a sample SQL query for creating a table which has data of many data types.
Task. Study it and identify how each data type is defined.
CREATE TABLE`all_data_types` (
 `varchar` VARCHAR(20) ,
 `tinyint` TINYINT ,
 `text` TEXT ,
 `date` DATE ,
 `smallint` SMALLINT ,
 `mediumint` MEDIUMINT ,
 `int` INT ,
 `bigint` BIGINT ,
 `float` FLOAT(10, 2) ,
 `double` DOUBLE ,
 `decimal` DECIMAL(10, 2) ,
 `datetime` DATETIME ,
 `timestamp` TIMESTAMP ,
 `time` TIME ,
 `year` YEAR ,
 `char` CHAR(10) ,
 `tinyblob` TINYBLOB ,
 `tinytext` TINYTEXT ,
 `blob` BLOB ,
 `mediumblob` MEDIUMBLOB ,
 `mediumtext` MEDIUMTEXT ,
 `longblob` LONGBLOB ,
 `longtext` LONGTEXT ,
 `enum` ENUM('1', '2', '3') ,
 `set` SET('1', '2', '3') ,
 `bool` BOOL ,
 `binary` BINARY(20) ,
 `varbinary` VARBINARY(20)
) ENGINE= MYISAM ;

© Yuriy Shamshin 22/24

SQL Cheat Sheet

© Yuriy Shamshin 23/24

© Yuriy Shamshin 24/24

