
© Yuriy Shamshin 1/10

RDM Normalization. Data Anomalies. Functional Dependency. Normal Forms.
Introduction.
This topic is a concise overview of normalization: what it is, why it's done, its pros and cons, its benefits and costs, the normalization process,
and 0NF to 3NF transformation.

Definition

Normalization is a logical data base design method. Normalization is a process of systematically breaking a complex table into simpler
ones. It is built around the concept of normal forms.

Why do we have to normalize?

Normalization is necessary if you do not do it then the overall integrity of the data stored in the database will eventually degrade.

Anomalies are caused when there is too much redundancy in the database's information or anomalies can often be caused when the tables
that make up the database suffer from poor construction.

Purposes of Normalization

In the design of a data model, normalization is the process of adjusting table and relations to:

• eliminate certain types of data (redundancy/replication) to improve consistency,
• produce a clearer and readable data model.
• provide maximum flexibility to meet future information needs by keeping tables corresponding to object types in their simplified forms.
• avoid anomalies

Normalization: Pros and Cons

Pros

• Reduce data redundancy & space required
• Enhance data consistency

© Yuriy Shamshin 2/10

• Enforce data integrity
• Reduce update cost
• Provide maximum flexibility in responding special queries
• Allow the use of parallelism,
• Can reduce the total number of rows per block.
• Improve Software Design

o Maintainability
o Reusability
o Readability

Cons

• Many complex queries will be slower because joins have to be performed to retrieve relevant data from several normalized tables
• Programmers/users have to understand the data model to perform proper joins among several tables
• The formulation of multiple-level queries is a non-trivial task.

© Yuriy Shamshin 3/10

Functional Dependencies
Definition: A functional dependency (FD) is a relationship between two attributes, typically between PK and other non-key table attributes.

For any relation R, attribute Y is functionally dependent on attribute X, if for every valid instance of X, that value of X uniquely determines the
value of Y. This relationship is indicated by this representation: X à Y. The left side of the above FD diagram (X) is called the determinant,
and the right side (Y) is the dependent. Here are a few examples:

1) SIN (Social Insurance Number) determines Name, Address and Birthdate. Using SIN, we can determine any of the other table attributes.
SIN à Name, Address, Birthdate

2) This also work for a composite PK. SIN and Course determine the course date completed (DateCompleted).
SIN, Course à DateCompleted

3) ISBN determines Book Title.
ISBN à Title

4) What of dependencies have between the attributes in Table R?
Table R Looking at actual data can help understand which attributes are dependent and which are determinants.

Since the values of A are unique (a1, a2, a3, etc.), it follows from the FD definition that:

• AàB, AàC, AàD, AàE
• AàBC or any other subset of ABCDE
• This can be summarized a AàBCDE
• From our understanding of primary keys, A is a primary key.

Since the values of E are always the same (all e1), it follows that:

• AàE, BàE, CàE, DàE
• However, we cannot generally summarize the above with ABCDàE

Combinations of BC are unique, therefore BCàADE
Combinations of BD are unique, therefore BDàACE

A B C D E
a1 b1 c1 d1 e1
a2 b1 c2 d2 e1
a3 b2 c1 d1 e1
a4 b2 c2 d2 e1
a5 b3 c3 d1 e1

© Yuriy Shamshin 4/10

Data Anomalies

If a database design is not perfect, it may contain anomalies, which are like a bad dream for any database administrator. Managing a
database with anomalies is next to impossible.

Formally, the following kind of Data Anomalies can arise:

Update Anomalies - inconsistency may occur because of the existence of data redundancy, have to update all relevant tuples instead of just
one.

Insertion Anomalies - happen when inserting vital data into the database is not possible because other data is not already there, E.g. A
library database that cannot store the details of a new member until that member has taken out a book.

• What to do when inserting tuple without the extra data?
• Use null?
• But what if it's part of the primary key? (It typically will be)
• What about subsequently added data? Should it replace the null, or just add a new row?

Deletion Anomalies - happen when the deletion of unwanted information causes desired information to be deleted as well.

• Replace with null because it's the last tuple for this entity?
• Do we lose information when we delete a tuple?
• Eg. delete the last student from a course.
• E.g. Deleting a library member can remove all details of the particular book from the database such as the author, book title etc.

Wasted storage - redundant information has to be stored multiple times.

Normalization is a method to remove all these anomalies and bring the database to a consistent state.

© Yuriy Shamshin 5/10

Simple Example of Data Anomalies.

People(ssn, name, addr, hobby)

ssn name addr hobby
555 Homer Simpson 12 Oak Street, Springfield Drinking
555 Homer Simpson 12 Oak Street, Springfield TV
555 Homer Simpson 12 Oak Street, Springfield Eating
666 Bart Simpson 12 Oak Street, Springfield Pranks
489 Lisa Simpson 12 Oak Street, Springfield Reading
489 Lisa Simpson 12 Oak Street, Springfield Politics
323 Krusty Clown 45 First Street, Springfield Games

Example Anomalies

• insert: try to insert someone's, who has no hobbies: keys can't have
null values! è then you cannot add Mona Simpson?

• delete: delete someone's last hobby: keys can't have null values! è
then you need delete the Bart Simpson?

• update: to change someone's address requires find and changing
multiple tuples è really it’s not a big problem.

• mixing: What if Mona Simpsons without any hobby were added with a
null hobby and then we do an insert: should it replace the null hobby?

Solution: separate relations with relationship creation, must be lossless information. That means we can get all the information back by
using a JOIN.

People(ssn, name, addr)
PeopleHobby(ssn, hobby)
Hobby(hobby)

Note not all redundancy removed, have foreign key (ssn and hobby). Can't be helped.

© Yuriy Shamshin 6/10

Normalization Process.

A flat file database contains all the data in one table. This is said to be un-normalized form (UNF or 0NF).

Applying the process of normalization to 3NF reduces many problems that can be found in an un-normalized database.

0NF to 1NF.

1.1. Make all columns atomic

Do you have any column which can be split into more than one column?

For example, address can be split into street, city, country and zip.

1.2. Have a primary key

Do you have a primary key?

Hint: A primary key is a column (or combination of columns) that uniquely identify all rows.

Add a primary key on existing column(s). If it's not possible to make existing column combinations as primary key

1.3. Move repeating group.

Do you have a group of two or more columns that are closely related and are all repeating the same attribute?

For example, a table that holds data on books might have columns such as book_id, book_name, author1, author2, author3 and so on
which form a repeating group. In this case a new table (book_id, author) should be created; and author1, author2, author3 should be
removed from initial table; and relationship 1:m between 2 table should be created.

1.4. Remove redundant column

Do you have a group of columns which on combining gives an existing column?

For example, if you have first_name, last_name and full_name then combining first_name and last_name gives full_name which is
redundant. Or date-of-birth and age. In this case redundant columns full_name or age should be removed from initial tables.

1NF to 2NF.

No partial dependencies possible as the primary key has just one column.

If primary key has just only one column, then table is already in second normal form.

© Yuriy Shamshin 7/10

Normalization Process in Brief.

Normalization Process Normalization steps

0 Normal Form
Do any attributes have multiple
values for a single instance of
an entity?
Do any attributes have value
from only one domain?

(Are the any redundant or
repeating attributes or
groups?).

Yes: Delete redundant attributes and
remove repeating attributes and groups
along with a copy of the key to a new
entity that describes this attributes.

Usually you will need to add a
relationship between the old and new
entities.

No: The data is in 1NF.
1 Normal Form

Is the identifier consist of more
than one attribute? If so, are
any attribute values dependent
on just part the identifier?

(Are the any partial functional
dependencies - FD?).

Yes: Remove the partial FD to a new
entity along with a copy of the part of
the key the entity is based on.

Usually you will need to add a
relationship between the old and new
entities.

No: The data is in 2NF.
2 Normal Form

Do any attribute values depend
on an attribute that is not the
entity's identifier?

(Are the any transitive
functional dependencies -
FD?).

Yes: Remove the derived attribute to a
new entity in which their values are
dependent on the identifier.

Usually you will need to add a
relationship between the old and new
entities.

No: The data model is in 3NF.
3 Normal Form or BCNF

© Yuriy Shamshin 8/10

Simple Examples of Normalization Steps.

0NF to 1NF.

• First Normal Form is defined in the definition of relations (tables) itself. This rule defines that all the attributes in a relation must have
atomic domains. The values in an atomic domain are indivisible units.

• We re-arrange the relation (table) as below, to convert it to First Normal Form.

• Each attribute must contain only a single value from its pre-defined domain. Need to add a primary key Course_ID.

 è

1NF to 2NF.

• We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID.

• According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent upon both and not on any party of the
prime key attribute individually.

• But we find that Stu_Name can be identified by Stu_ID and Proj_Name can be identified by Proj_ID independently. This is called partial
dependency, which is not allowed in Second Normal Form.

• We broke the relation in two as depicted in the above picture. So there not exists a partial dependency.

 è

© Yuriy Shamshin 9/10

2NF to 3NF or BCNF.

• For a relation to be in Third Normal Form, it must be in Second Normal form and no non-prime attribute is transitively dependent on
prime key attribute over the not super-key.

• We find that in the above Student_detail relation, Stu_ID is the key and only prime key attribute.

• We find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a superkey nor is City a prime attribute. Additionally,
Stu_ID → Zip → City, so there exists transitive dependency.

• To bring this relation into third normal form, we break the relation into two relations as follow.

 è

Boyce-Codd Normal Form.

• Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict terms. BCNF states that for any non-trivial functional
dependency, X → A, X must be a super-key.

• Only in rare cases does a 3NF table not meet the requirements of BCNF. A 3NF table that does not have multiple overlapping candidate
keys is guaranteed to be in BCNF

• In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the super-key in the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

• Which confirms that both the relations are in BCNF.

© Yuriy Shamshin 10/10

Denormalization

Sometimes, it's better not to normalize, even to combine tables that were already separate. Criteria to consider:

• decomposition makes complex queries slower
• decomposition makes simple queries faster
• decomposition makes simple updates faster
• decomposition reduces storage
• decomposition can sometimes increase storage

