Modern Database Management

Lecture 5a - Relational Algebra and Calculus

Relational Algebra and Calculus

Relational Algebra and Calculus

- Relational Algebra and Relational Calculus are the formal query languages for a relational model.
- Query languages are specialized languages for asking questions (or queries) that involve the data in a database.
- Both form the base for the SQL language which is used in most of the relational DBMSs.

Relational Queries

- Before we start, we need to clarify important points about the relational queries:

The inputs and output of a query are relations

Relational Queries

- Before we start, we need to clarify important points about the relational queries:

Queries involve the computation of intermediate results which are themselves relation instances

Relational Algebra vs Relational Calculus

Relational Algebra

- Procedural language that describes the procedure to obtain the result.
- It describes the order of operations in the query that specifies how to retrieve the result.

Relational Algebra vs Relational Calculus

Relational Calculus

- Declarative language that defines what result is to be obtained.
- It does not specify the sequence of operations in which query will be evaluated.

Relational Algebra

- Relational algebra expression is a sequence of operations to build a query, through a collection of operators.
- In a normal algebra we operate on number, but in relational algebra we operate on relations instead.
- The operators in any expression are either unary or binary operators.

Relational Algebra

- The operators in any expression are either unary or binary operators.
- The unary operator accepts one relation as an input and produces a new relation as a result.

Relational Algebra

- The operators in any expression are either unary or binary operators.
- The binary operator accepts two relations as input and produces a new relation as a result.

Relational Algebra

- The result relation obtained from the expression can be further composed to other expression whose result will again be a new relation.

- This property allows the composition of operators to form complex queries

Selection operator - σ

- The selection operator (unary operator) returns a subset of tuples from a relation that satisfies certain condition.

$\sigma_{\text {<selection condition> }}$ (Relation)

- Think of the selection condition as the if statement in programming languages.

Selection operator - σ

$\sigma_{\text {<selection condition> }}$ (Relation)

- The selection condition is a Boolean combination of terms with the form of:
$<$ Attribute $><$ Comparison operator $><$ Constant value $>$
$<$ Attribute $1><$ Comparison operator $><$ Attribute $2>$
- The comparison operators can be: $>,<,=,>=,<=, \neq$

Selection operator - σ

$\sigma_{\text {<selection condition> }}$ (Relation)

- The selection operator is applied independently to each individual tuple of the operand (Relation), and the tuple is selected if and only if the condition evaluates to TRUE.

$\sigma_{\text {Age }=18}$ (Student)

ID	Short name	Age	GPA
344	A J	20	3.8
342	B K	18	3.6
767	C E	20	3.2
345	D P	18	3.5
234	E U	19	3.7

- The schema of the result is the schema of the input relation instance (all the fields exist in the result, we are selecting rows/tuples)

$\sigma_{\text {Age }=18}$ (Student)

ID	Short name	Age	GPA
344	A J	20	3.8
342	B K	18	3.6
767	C E	20	3.2
345	D P	18	3.5
234	E U	19	3.7

ID	Short name	Age	GPA
342	B K	18	3.6
345	D P	18	3.5

$\sigma_{\text {GPA }<=3.6}$ (Student)

ID	Short name	Age	GPA	
344	A J	20	3.8	
342	B K	18	3.6	
767	C E	20	3.2	
345	D P	18	3.5	
234	E U	19	3.7	
ID	Short name	Age	GPA	
342	B K	18	3.6	
767	C E	20	3.2	
345	D P	18	3.5	

Selection operator - σ

$\sigma_{\text {<selection condition> }}$ (Relation)

- We can have one or more selection condition linked through Boolean operators (e.g., AND, OR, NOT)

$$
\sigma_{<\text {condition> Boolean operator < condition> }}(R)
$$

$\sigma_{\text {GPA }}<=$ 3.6 AND Age $=20$ (Student)

ID	Short name	Age	GPA
344	A J	20	3.8
342	B K	18	3.6
767	C E	20	3.2
345	D P	18	3.5
234	E U	19	3.7

ID	Short name	Age	GPA
767	C E	20	3.2

Selection operator - σ - equivalence

$$
\begin{array}{cc}
\sigma_{<C 2>}\left(\sigma_{<C 1>}(R)\right) \\
& \\
\sigma_{<C 1>}(R) & \text { Step 1 } \\
\sigma_{<C 2>}\left(\begin{array}{c}
\text { S }
\end{array}\right) & \text { Step 2 }
\end{array}
$$

Selection operator - σ - equivalence

$$
\begin{gathered}
\sigma_{<C 2>}\left(\sigma_{<C 1>}(R)\right) \\
= \\
\sigma_{<C 1>}\left(\sigma_{<C 2>}(R)\right) \\
= \\
\sigma_{<C 1>} \text { AND <C2> }(R)
\end{gathered}
$$

Projection operator $-\pi$

- The projection operator (unary operator) returns a subset of fields (attributes/columns) from a relation.
$\pi_{\text {<attribute } 1 \text {, attribute } 2 \ldots \text { attribute } n>}$ (Relation)

$\pi_{\text {ID, Short name }}$ (Relation)

ID	Short name	Age	GPA
344	A J	20	3.8
342	B K	18	3.6
767	C E	20	3.2
345	D P	18	3.5
234	E U	19	3.7

ID	Short name
344	A J
342	B K
767	C E
345	D P
234	E U

$\pi_{I D}\left(\pi_{I D, \text { Short name }}(\right.$ Relation $\left.)\right)$

ID	Short name	Age	GPA
344	A J	20	3.8
342	B K	18	3.6
767	C E	20	3.2
345	D P	18	3.5
234	E U	19	3.7

ID	Short name	ID
344	A J	344
342	B K	342
767	C E	767
345	D P	345
234	E U	234

$\pi_{\text {Age }}$ (Relation)

ID	Short name	Age	GPA
344	A J	20	3.8
342	B K	18	3.6
767	C E	20	3.2
345	D P	18	3.5
234	E U	19	3.7

- The relational model is a set-based (no duplicate tuples allowed)

$\pi_{\text {Age }}$ (Relation)

ID	Short name	Age	GPA	Age	Age
344	A J	20	3.8	20	Age
342	B K	18	3.6	18	20
767	C E	20	3.2	20	18
345	D P	18	3.5	18	19
234	E U	19	3.7	19	

- The relational model is a set-based (no duplicate tuples allowed)

$$
\pi_{<A 1>}\left(\sigma_{<C 1>}(R)\right)
$$

$\sigma_{<C 1>}(R)$

$$
\pi_{<A 1>}(S)
$$

($\sigma_{\text {Age } 20}$ (Student)

ID	Short name	Age	GPA					
344	A J	20	3.8					
342	B K	18	3.6					
767	C E	20	3.2					
345	D P	18	3.5					
234	E U	19	3.7	\quad	ID	Short name	Age	GPA
:---	:---	:---	:---	:---				
342	B K	18	3.6					
345	D P	18	3.5					
234	E U	19	3.7					

- The relational model is a set-based (no duplicate tuples allowed)

$\pi_{\text {Short name }}\left(\sigma_{\text {Age<20 }}(\right.$ Student $\left.)\right)$

$\left.$| ID | Short
 name | Age | GPA |
| :--- | :--- | :--- | :--- |
| 344 | A J | 20 | 3.8 |
| 342 | B K | 18 | 3.6 |
| 767 | C E | 20 | 3.2 |
| 345 | D P | 18 | 3.5 |
| 234 | E U | 19 | 3.7 |\quad| ID | Short
 name | Age | GPA |
| :--- | :--- | :--- | :--- | :--- |
| 342 | B K | 18 | 3.6 |
| 345 | D P | 18 | 3.5 |
| 234 | E U | 19 | 3.7 |\quad| Short |
| :--- |
| name | \right\rvert\, | B K |
| :--- | :--- |

- The relational model is a set-based (no duplicate tuples allowed)

Renaming operator $-\rho$

- The results of relational algebra are relations without names.
- The rename operation allows us to rename the output relation.

Renaming operator - ρ

- Sometimes it is necessary to use the same relation or the same attribute several times in a query, so you can use the renaming operator (unary operator).

$\rho_{S}(R)$

rename relation R into relation S

Renaming operator - ρ

- Sometimes it is necessary to use the same relation or the same attribute several times in a query, so you can use the renaming operator (unary operator).

ρ <attribute1 new name \leftarrow attribute 1 old name> (R)

Rename attribute 1 of R from old name to new name

$\rho_{\text {Student id }} \leftarrow$ ID Student

ID	Short name	Age	GPA					
344	A J	20	3.8					
342	B K	18	3.6					
767	C E	20	3.2					
345	D P	18	3.5					
234	E U	19	3.7	\quad	Student id	Short name	Age	GPA
:---	:---	:---	:---					
344	A J	20	3.8					
342	B K	18	3.6					
767	C E	20	3.2					
345	D P	18	3.5					
234	E U	19	3.7					

- The relational model is a set-based (no duplicate tuples allowed)

$\rho_{\text {FirstYear_Students }}\left(\sigma_{\text {Age }=18}\right.$ (Student))

ID	Short name	Age	GPA
344	A J	20	3.8
342	B K	18	3.6
767	C E	20	3.2
345	D P	18	3.5
234	E U	19	3.7

Result: "FirstYear_Students"

Student id	Short name	Age	GPA
342	B K	18	3.6
345	D P	18	3.5

- The relational model is a set-based (no duplicate tuples allowed)

$\rho_{\text {FirstYear_Students }}\left(\sigma_{\text {Age }=18}\right.$ (Student))

($\sigma_{\text {GPA }} 3.5$ (FirstYear_Students))

Cross-product (Cartesian Product)

Cross-product (cartesian product)

- R x S returns a relation instance whose schema contains all the fields of R followed by all the fields of S -forming all possible combinations (fields of the same name are unnamed).

				S		Rid	name	Sid	Bid
				S		22	D W	20	109
Rid	name		Sid	Bid	=	22	D W	39	102
22	D W	X	20	109		22	L M	30	
31	LM		39	102		31	LM	20	109
58	R S					31	L M	39	102
5	RS					58	R S	20	109
						58	R S	39	102

Cross-product (cartesian product)

Employee	
Name SSN Depender John 9999 Tony 7777\mathbf{X}ESSN DName 9999 Emily 7777 Joe$=$Name SSN ESSN DName John 9999 9999 Emily John 9999 7777 Joe Tony 7777 9999 Emily Tony 7777 7777 Joe	

Assume the following relations:

```
BOOKS(DocId, Title, Publisher, Year)
STUDENTS(StId, StName, Major, Age)
AUTHORS(AName, Address)
borrows(DocId, StId, Date)
has-written(DocId, AName)
describes(DocId, Keyword)
```

- List the year and title of each book. $\pi_{\text {Year, Title }}($ BOOKS $)$
- List all information about students whose major is CS. $\sigma_{\text {Major }}=$ 'CS' $(S T U D E N T S)$
- List all students with the books they can borrow. STUDENTS \times BOOKS
- List all books published by McGraw-Hill before 1990.
$\sigma_{\text {Publisher }}=$ 'McGraw-Hill' \wedge Year <1990 $($ BOOKS $)$

Relational Algebra operators from the Set theory

Relational Algebra operators from the Set theory

Union

Intersection

Difference

- The input relations must be compatible (must have the same number and names of attributes - same schema)
- The result will follows the input schema
- Duplicate tuples are eliminated.

The union binary operator:

- $R \cup S$ returns a relation instance containing all tuples that occur in either relation instance R or relation instance S (or both)

A	B
1	2
1	3
2	2

	A	B
	1	2
	3	
	2	
3	3	

$\cdot(R \cup S)=(S \cup R)$

Students		Sid	name	semester
gpa				

Find the names of all teachers and students
$\pi_{\text {name }}$ (Professors) $\cup \pi_{\text {name }}$ (Students)

To union different schemas, rename fields

Find the names and ids of all teachers and students
$\rho_{\text {id } \leftarrow \text { Pid }}\left(\pi_{\text {Pid, name }}(\right.$ Prof $\left.)\right) \cup \quad \rho_{\text {id } \leftarrow \text { Sid }}\left(\pi_{\text {sid, name }}\left(S_{\text {Stud }}\right)\right)$

The intersection binary operator:

- $R \cap S$ returns a relation instance containing all tuples that occur in both relation instance R and relation instance S

A	B	B	=		
1	2	2		A	B
1	3	3		1	2
2	2	2		2	2

$\cdot(\mathrm{R} \cap \mathrm{S})=(\mathrm{S} \cap \mathrm{R})$

The Difference binary operator:

- R - S returns a relation instance containing all tuples that occur in relation instance R but not in relation instance S

$\bullet(\mathrm{R}-\mathrm{S}) \neq(\mathrm{S}-\mathrm{R})$

The Symmetrical Difference binary operator:

$$
(R \Delta S)=(R-S) \cup(S-R)
$$

- Determine all students who so far have not taken any exam

Professors	$\underline{\text { Pid }}$	name	room	rank
Students	$\underline{\text { Sid }}$	name	semester	gpa
tests	$\underline{\text { Sid }}$	$\underline{\text { Lid }}$	$\underline{\text { Pid }}$	grade

$\pi_{\text {sid }}$ (students) $\quad-\quad \pi_{\text {sid }}$ (tests)

Assume the following relations:

```
BOOKS(DocId, Title, Publisher, Year)
STUDENTS(StId, StName, Major, Age)
AUTHORS(AName, Address)
borrows(DocId, StId, Date)
has-written(DocId, AName)
describes(DocId, Keyword)
```

- List the name of students who are older than 30 and who are not studying CS.
$\pi_{\text {StName }}\left(\sigma_{\text {Age }>30}(\right.$ STUDENTS $\left.)\right)-\pi_{\text {StName }}\left(\sigma_{\text {Major='CS' }}(\right.$ STUDENTS $\left.)\right)$

Join Operator

The Join Operator

- The most used operator in the relational algebra.
- The join operator allows us to establish connections among data in different relations.
- Three main versions of the join:

1. Natural Join
2. Theta Join
3. Equi Join

Natural Join Operator: \bowtie

- Assume relation R has attributes $\mathrm{A}_{1}, \ldots \mathrm{~A}_{\mathrm{m}}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}}$
- Assume relation S has attributes $B_{1}, \ldots B_{k}, C_{1}, \ldots, C_{n}$

$R \bowtie S$

$\pi_{A 1, . ., A m, R . B 1, . ., R . B k, C 1, . ., C n}\left(\sigma_{R . B 1=S . B 1 \wedge ~ . . . \wedge ~ R . B k=S . B k}(R x S)\right)$

Natural Join Operator: \bowtie
First step: R x S

R			S				$=$	A	B	R.C	S.C	D	E
A	B	C	X	C	D	E		A1	B1	C1	C1	D1	E1
A1	B1	C1		C1	D1	E1		A1	B1	C1	C3	D3	E3
A2	B2	C2		C3	D3	E3		A2	B2	C2	C1	D1	E1
								A2	B2	C2	C3	D3	E3

Natural Join Operator: \bowtie

Second step: $\sigma_{\text {R.C=S.C }}(\mathrm{RxS})$

R
S

A	B	R.C S.C	D	E	
A1	B1	C1	C1	D1	E1
A1	B1	C1	C3	D3	E3
A2	B2	C2	C1	D1	E1
A2	B2	C2	C3	D3	E3

A	B	R.C	S.C	D	E
A1	B1	C1	C1	D1	E1

Natural Join Operator: \bowtie

Third step: $\pi_{\text {A, B, R.C, D, E }}\left(\sigma_{\text {R.C=S.C }}(\operatorname{RxS})\right)$

Natural Join Operator: \bowtie

$$
\mathrm{R} \bowtie \mathrm{~S}=\pi_{\mathrm{A}, \mathrm{~B}, \mathrm{R.C}, \mathrm{D}, \mathrm{E}}\left(\sigma_{\mathrm{R.C}=\mathrm{S.C}}(\mathrm{RxS})\right)
$$

Natural Join Operator: \bowtie
$R \bowtie S=\pi_{A, R . B, C}\left(\sigma_{R . B=S . B}(R x S)\right)$

Natural Join Operator: \bowtie
$R \bowtie S=\pi_{A, R . B, C}\left(\sigma_{R . B=S . B}(R x S)\right)$

Which lectures are held by which professors?

Professors	Pid	name	room	rank	
Lectures	Lid	title	credits	Pid	

Professors \bowtie Lectures

Result | Pid | name | room | rank | Lid | title | credits |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Which lectures are held by which professors, in terms of the lecture title and professor name?

Professors	Pid	name	room	rank	
Lectures	Lid	title	credits	Pid	

$\pi_{\text {name,title }}$ (Professors \bowtie Lectures)

Which students attend which lectures?

Students	Sid	name	semester	gpa
Lectures	$\underline{\text { Lid }}$	title	credits	Held by
Attends	药			
Sid	Lid			

Which students attend which lectures?

Students \bowtie Attends \bowtie Lectures

Result | Sid | name | semester | gpa | Lid | title | credits | Held by |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Theta Join Operator: $\bowtie_{\text {condition }}$

- Assume relation R has attributes $\mathrm{A}_{1}, \ldots \mathrm{~A}_{\mathrm{m}}$
- Assume relation S has attributes $B_{1}, \ldots B_{k}$
- The result schema has $\mathrm{m}+\mathrm{k}$ attributes
$R \bowtie$
condition S
$=$
$\sigma_{\text {condition }}(R \times S)$

Theta Join Operator: $\bowtie_{\text {condition }}$

- Assume relation R has attributes $\mathrm{A}_{1}, \ldots \mathrm{~A}_{\mathrm{m}}$
- Assume relation S has attributes $B_{1}, \ldots B_{k}$
- The result schema has $\mathrm{m}+\mathrm{k}$ attributes
$R \bowtie$

$$
\text { R.Ai < S.Bj } S
$$

$$
\left.=\sigma_{R . A i}<S . B j=R \times S\right)
$$

Theta Join Operator: $\bowtie_{\text {condition }}$

- Assume relation R has attributes $\mathrm{A}_{1}, \ldots \mathrm{~A}_{\mathrm{m}}$
- Assume relation S has attributes $B_{1}, \ldots B_{k}$
- The result schema has $\mathrm{m}+\mathrm{k}$ attributes

$R \bowtie$

$$
\text { R.Ai }=\mathrm{S} . \mathrm{Bj} \mathrm{~S}
$$

$$
=
$$

$$
\sigma_{R . A i=S . B j}(R \times S)
$$

- When the condition involves equality check between certain attributes, the theta join is donated as equi-join

Which lectures are held by which professors?

Professors | Pid | name | room | rank |
| :--- | :--- | :--- | :--- |

Lectures | Lid | title | credits | Held by |
| :--- | :--- | :--- | :--- |
| | | | |

Professors $\bowtie_{\text {Pid = Held_by }}$ Lectures

OR

Professors $\bowtie\left(\rho_{\text {Pid } \leftarrow \text { Held_by }}\right.$ Lectures $)$

Popup quiz

Q1: Find names of sailors who have reserved boat with id 103 ?

$\pi_{\text {sname }}\left(\sigma_{\text {Bid = } 103}(\right.$ Reserve \bowtie Sailors))
 $\pi_{\text {sname }}\left(\left(\sigma_{\text {Bid }=103}\right.\right.$ Reserve) \bowtie Sailors)

Popup quiz

Q2: Find names of sailors who have reserved red boat?
$\pi_{\text {Sname }}\left(\sigma_{\text {Color = 'red' }}(\right.$ Reserve \bowtie Sailors \bowtie Boat))
$\pi_{\text {sname }}\left(\sigma_{\text {color }=\text { 'red' }}\right.$ Boat) \bowtie Sailors \bowtie Reserve)

Popup quiz

Q3: Find the colors of boats reserved by John?
$\pi_{\text {color }}\left(\sigma_{\text {Sname }=\text { john' }}(\right.$ Sailor \bowtie Reserve \bowtie Boat))
$\pi_{\text {color }}\left(\right.$ ($\sigma_{\text {Sname }}=$ john' Sailor) \bowtie Reserve \bowtie Boat $)$

