
© Yuriy Shamshin 1/12

Database Development Life Cycle.

Contents

• 1. Software Development Life Cycle – Waterfall
• 2. Conceptual, logical and physical data models
• 3. Database Life Cycle

o 3.1. Requirements Gathering
§ 3.1.1. REA Data Model

o 3.2. Analysis. Conceptual Model
o 3.3. Logical Model
o 3.4. Implementation
o 3.5. Realizing the Design
o 3.6. Populating the Database

• 4. Resume

Database Development Life Cycle

Subject Area Analysis -> Conceptual Model -> Logical Design -> Physical Design -> Optimize

• A core aspect of software engineering is the subdivision of the development process into a series of phases, or steps.
• Each step focuses on one aspect of the development.
• The collection of these steps is sometimes referred to as the software development life cycle (SDLC).
• The software product moves through this life cycle (sometimes repeatedly as it is refined or redeveloped) until it is finally retired from

use.
• Ideally, each phase in the life cycle can be checked for correctness before moving on to the next phase.

© Yuriy Shamshin 2/12

1. Software Development Life Cycle – Waterfall

Waterfall model seen in right picture, illustrates a general waterfall model that could apply to
any computer system development.

It shows the process as a strict sequence of steps where the output of one step is the input to
the next and all of one step has to be completed before moving onto the next.

We can use the waterfall process as a means of identifying the tasks that are required,
together with the input and output for each activity.

Important of the activities:

• Establishing requirements involves consultation and agreement between stakeholders.
• Analysis starts by requirements and finishes by a system specification. The specification is a

formal representation of what a system should do, expressed in terms that are independent of
how it may be realized.

• Design begins with the specification of the system, the design documentation is written and a
detailed description of how the system should be built.

• Implementation is the construction of a computer system to include specific hardware or
software available for the development. Implementation may be staged, usually with an initial
system that can be validated and tested before a final system is released for use.

• Testing compares the implemented system against the design documents and requirements
specification and produces an acceptance report or a list of errors and bugs to correct.

• Maintenance include changes in the requirements or the implementation environment, bug
fixing or migrating of the system to new environments.

• The waterfall life cycle will be repeatedly revisited because Maintenance includes the
analysis of the changes required, design of a solution, implementation and testing of that
solution over the lifetime of a maintained software system.

© Yuriy Shamshin 3/12

2. Conceptual, logical and physical data models
Data models are typically drawn at up to three levels of detail:

• Conceptual data model: The highest-level view containing the minimum detail. Its showing volume of the model and draw the system
architecture. For a smaller system it may not be necessary to draw, and design start with the logical model.

• Logical data model: Contains more detail than a conceptual model. The logical model is independent of the technology in which it will
be implemented.

• Physical data model: One or more physical model may be developed from each logical model. The physical models must show
technology detail to produce and implement the actual database.

Three-Schemes Architecture

© Yuriy Shamshin 4/12

3. Database Life Cycle

We can use the waterfall cycle as the basis for a model of database development.

It is applicable to any class of DBMS, not just a relational approach.

Database application development is the process of obtaining real-world requirements,
analyzing requirements, designing the data and functions of the system, and then
implementing the operations in the system.

3.1. Requirements Gathering

The first step is requirements gathering.

During this step, the database designers have to interview the customers (database users) to
understand the proposed system and obtain and document the data and functional requirements.

The result of this step is a document that includes the detailed requirements provided by the users.

Organization experts (managers, accountants, users) are necessarily involved in the creation of
the database.
Experts work with two tools - REA data model and E-R diagrams, which are used at the stage of
database development.

© Yuriy Shamshin 5/12

3.1.1. REA Data Model
The REA data model was specifically created for the development of databases designed to record transactions in organizations.

REA are the English initials of three fundamental entity types:

• Resources acquired and used by the organization. Most of the organization's resources are traditionally classified as its assets. These
are money, inventories, real estate, etc. That is, the assets that are subject to accounting.

• Events, that take place in the organization. This is any activity of
an organization that changes the state of resources. In the REA
model, events include traditional accounting operations (sales,
purchases, salary payments, etc.), and other operations to collect
data (creating customer orders, stages of orders execution, etc.).

• Agents of these events. These are the groups of people about
whom the organization collects data. Participants are always
involved or related to some events. For example, sellers make
sales transactions, cashiers accept money, suppliers provide
goods, customers place orders, etc.

REA Model Example

Resources Events Agents
Goods
Money

Sales
Cash Receipt

Sales Person
Customer
Cashier

Convert REA to ER Diagram à

The REA model, on the basis of which this ER diagram is built, consists
of 7 entities, information about which is subject to saving.

Each relationship in the diagram has a link name that allows you to simply read its meaning (sales to whom? - to customers, payment in
payment for a sale, etc.)

© Yuriy Shamshin 6/12

3.2. Analysis.Conceptual Model

Data analysis begins with the statement of data requirements and then produces a conceptual data model. The aim of analysis is to obtain a
detailed description of the data that will suit user requirements so that both high and low level properties of data and their use are dealt
with. These include properties such as the possible range of values that can be permitted for attributes (e.g., in the school database
example, the student course code, course title and credit points).

The conceptual data model provides a shared, formal representation of what is being communicated between clients and developers during
database development – it is focused on the data in a database, irrespective of the eventual use of that data in user processes or
implementation of the data in specific computer environments. Therefore, a conceptual data model is concerned with the meaning and
structure of data, but not with the details affecting how they are implemented.

The conceptual data model then is a formal representation of what data a database should contain and the constraints the data must satisfy.
This should be expressed in terms that are independent of how the model may be implemented.

As a result, analysis focuses on the questions, “What is required?” not “How is it achieved?”

Entity Finding

A definable thing - such as a person, object, concept or event - that can have data stored about it. Think of entities as nouns. Examples: a
customer, student, car or product.

Organisations require information in order to carry out the tasks and activities for which they are responsible. The information that these
organisations need could be categorised in a number of ways, for example:

People

• Payroll

• Pensions

• Annual leave

• Sick leave

Things

• Furniture

• Equipment

• Stationery

• Fire extinguishers

Locations

• Offices

• Warehouses

• Stock rooms

Events

• Sale is made

• Purchase order is
raised

• Item is hired

• Invoice is issued

Concepts

• Image of product

• Advertising

• Marketing

• Research and
development.

© Yuriy Shamshin 7/12

3.3. Logical Model

Database design starts with a conceptual data model and produces a specification of a logical schema; this will determine the specific type
of database system (network, relational, object-oriented) that is required. The relational representation is still independent of any specific
DBMS; it is another conceptual data model.

We can use a relational representation of the conceptual data model as input to the logical design process. The output of this stage is a
detailed relational specification, the logical schema, of all the tables and constraints needed to satisfy the description of the data in the
conceptual data model. It is during this design activity that choices are made as to which tables are most appropriate for representing the
data in a database. These choices must take into account various design criteria including, for example, flexibility for change, control of
duplication and how best to represent the constraints. It is the tables defined by the logical schema that determine what data are stored and
how they may be manipulated in the database.

Database designers familiar with relational databases and SQL might be tempted to go directly to implementation after they have produced
a conceptual data model. However, such a direct transformation of the relational representation to SQL tables does not necessarily result in
a database that has all the desirable properties: completeness, integrity, flexibility, efficiency and usability. A good conceptual data model
is an essential first step towards a database with these properties, but that does not mean that the direct transformation to SQL tables
automatically produces a good database. This first step will accurately represent the tables and constraints needed to satisfy the conceptual
data model description, and so will satisfy the completeness and integrity requirements, but it may be inflexible or offer poor usability.
The first design is then flexed to improve the quality of the database design. Flexing is a term that is intended to capture the simultaneous
ideas of bending something for a different purpose and weakening aspects of it as it is bent.

Figure summarizes the iterative (repeated) steps involved in database design, based on the overview given. Its main purpose is to
distinguish the general issue of what tables should be used from the detailed definition of the constituent parts of each table – these tables
are considered one at a time, although they are not independent of each other. Each iteration that involves a revision of the tables would
lead to a new design; collectively they are usually referred to as second-cut designs, even if the process iterates for more than a single
loop.

© Yuriy Shamshin 8/12

A summary of the iterative steps involved in database design.

First, for a given conceptual data model,
it is not necessary that all the user
requirements it represents be satisfied by
a single database. There can be various
reasons for the development of more than
one database, such as the need for
independent operation in different
locations or departmental control over
“their” data. However, if the collection of
databases contains duplicated data and
users need to access data in more than
one database, then there are possible
reasons that one database can satisfy
multiple requirements, or issues related to
data replication and distribution need to
be examined.

Second, one of the assumptions about
database development is that we can
separate the development of a database
from the development of user processes
that make use of it. This is based on the
expectation that, once a database has
been implemented, all data required by
currently identified user processes have
been defined and can be accessed; but we also require flexibility to allow us to meet future requirements changes. In developing a database
for some applications, it may be possible to predict the common requests that will be presented to the database and so we can optimize our
design for the most common requests.

© Yuriy Shamshin 9/12

Third, at a detailed level, many aspects of database design and implementation depend on the particular DBMS being used. If the choice of
DBMS is fixed or made prior to the design task, that choice can be used to determine design criteria rather than waiting until
implementation. That is, it is possible to incorporate design decisions for a specific DBMS rather than produce a generic design and then
tailor it to the DBMS during implementation.

It is not uncommon to find that a single design cannot simultaneously satisfy all the properties of a good database. So it is important that
the designer has prioritized these properties (usually using information from the requirements specification); for example, to decide if
integrity is more important than efficiency and whether usability is more important than flexibility in a given development.

At the end of our design stage, the logical schema will be specified by SQL data definition language (DDL) statements, which describe the
database that needs to be implemented to meet the user requirements.

3.4. Implementation

Implementation involves the construction of a database according to the specification of a logical schema. This will include the
specification of an appropriate storage schema, security enforcement, external schema and so on. Implementation is heavily influenced by
the choice of available DBMSs, database tools and operating environment. There are additional tasks beyond simply creating a database
schema and implementing the constraints – data must be entered into the tables, issues relating to the users and user processes need to be
addressed, and the management activities associated with wider aspects of corporate data management need to be supported. In keeping
with the DBMS approach, we want as many of these concerns as possible to be addressed within the DBMS. We look at some of these
concerns briefly now.

In practice, implementation of the logical schema in a given DBMS requires a very detailed knowledge of the specific features and
facilities that the DBMS has to offer. In an ideal world, and in keeping with good software engineering practice, the first stage of
implementation would involve matching the design requirements with the best available implementing tools and then using those tools for
the implementation. In database terms, this might involve choosing vendor products with DBMS and SQL variants most suited to the
database we need to implement. However, we don’t live in an ideal world and more often than not, hardware choice and decisions
regarding the DBMS will have been made well in advance of consideration of the database design. Consequently, implementation can
involve additional flexing of the design to overcome any software or hardware limitations.

© Yuriy Shamshin 10/12

3.5. Realizing the Design

After the logical design has been created, we need our database to be created according to the definitions we have produced. For an
implementation with a relational DBMS, this will probably involve the use of SQL to create tables and constraints that satisfy the logical
schema description and the choice of appropriate storage schema (if the DBMS permits that level of control).

One way to achieve this is to write the appropriate SQL DDL statements into a file that can be executed by a DBMS so that there is an
independent record, a text file, of the SQL statements defining the database. Another method is to work interactively using a database tool
like SQL Server Management Studio or Microsoft Access. Whatever mechanism is used to implement the logical schema, the result is that
a database, with tables and constraints, is defined but will contain no data for the user processes.

3.6. Populating the Database

After a database has been created, there are two ways of populating the tables – either from existing data or through the use of the user
applications developed for the database.

For some tables, there may be existing data from another database or data files. For example, in establishing a database for a hospital, you
would expect that there are already some records of all the staff that have to be included in the database. Data might also be brought in
from an outside agency (address lists are frequently brought in from external companies) or produced during a large data entry task
(converting hard-copy manual records into computer files can be done by a data entry agency). In such situations, the simplest approach to
populate the database is to use the import and export facilities found in the DBMS.

Facilities to import and export data in various standard formats are usually available (these functions are also known in some systems as
loading and unloading data). Importing enables a file of data to be copied directly into a table. When data are held in a file format that is
not appropriate for using the import function, then it is necessary to prepare an application program that reads in the old data, transforms
them as necessary and then inserts them into the database using SQL code specifically produced for that purpose. The transfer of large
quantities of existing data into a database is referred to as a bulk load. Bulk loading of data may involve very large quantities of data being
loaded, one table at a time so you may find that there are DBMS facilities to postpone constraint checking until the end of the bulk
loading.

© Yuriy Shamshin 11/12

4. Resume.
Designing a database (DB) is one of the most complex and critical tasks associated with the creation of an Automated Information System
(AIS).

Database design is a process that involves the use of a specific methodology.

4.1. Database Design Sequence

The design process includes the following steps:

1. Definition of IS tasks.
2. Collection and analysis of documents related to the studied subject area (SubAr).
3. Description of SubAr features that allow you to establish dependencies and relationships between objects (subjects) of the subject area.
4. Definition of user groups and the list of tasks facing each group (DB Administrators, DB Developer, Enterprise Manager, Simple User).
5. Search for entities, attributes and relationships. Analysis of categories of enterprise values: people, things, events, locations, events,
concepts. Analysis of the REA Data Model.
6. Creating an ERD subject area.
7. Creating a logical database schema. Creating relationship patterns, defining attribute data types and integrity constraints (Initial RDM).
8. Normalization of relations (up to 3NF or BKNF) and the formation of End RDM.
9. The choice of hardware and software platform for the implementation of the database.
10. The choice of DBMS (database management system).
11. Determining user access rights to database objects.
12. Writing a script to create the main database objects in the DDL SQL language in the syntax of the selected DBMS (tables, relationships).
13. Creation of test data (Populating Database).
14. Writing scripts to create additional database objects (views, indexes, triggers, roles, users, etc.).
15. Creating examples of queries to select, modify and delete data in DML SQL.
16. Creation of database applications (exe, html, php, java).

© Yuriy Shamshin 12/12

4.2. Database Design Stags

These steps can be combined in 7 stages:

1. Analysis of the subject area (1-4).

2. Conceptual (infological) design (5-6).

3. Logical database design (7-8).

4. Requirements for the operating environment (9-11).

5. Physical design of the database (12-14).

6. Creating queries to the database (15).

7. Creation of database applications (16).

The main approaches to creating a conceptual model of the subject area are:

1. A functional approach to database design ("from tasks").

2. The subject approach to database design ("from the subject area").

3. The method of "entity-relationship" (entity – relation, ER – method).

We will use the “entity – relationship” method as the most popular.

1. System analysis of the subject area
(informal text)

2. Conceptual design
(ER-model)

4. Definition of requirements
(Hardware, OS, Networks),

choice of DBMS (mySQL, Oracle)

3. Logical design
(relational model, normalization,

integrity constraints)

5. Physical design in a specific DBMS
(SQL DML, DDL, DCL, TCL:

Populating, Index, View, Integrity,
Transact)

6. Creating queries in a specific DBMS
(SQL DML: Select, Insert, Update,

Delete)

7. Creation of applications for a DBMS
(php, Java, exe)

